




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
Waterforhydrogenproduction
?IRENA2023
Unlessotherwisestated,materialinthispublicationmaybefreelyused,shared,copied,reproduced,printedand/orstored,providedthatappropriateacknowledgementisgivenofIRENAasthesourceandcopyrightholder.Materialinthispublicationthatisattributedtothirdpartiesmaybesubjecttoseparatetermsofuseandrestrictions,andappropriatepermissionsfromthesethirdpartiesmayneedtobesecuredbeforeanyuseofsuchmaterial.
ISBN:978-92-9260-526-1
CITATION:IRENAandBluerisk(2023),Waterforhydrogenproduction,InternationalRenewableEnergyAgency,Bluerisk,AbuDhabi,UnitedArabEmirates.
ABOUTIRENA
TheInternationalRenewableEnergyAgency(IRENA)isanintergovernmentalorganisationthatsupportscountriesintheirtransitiontoasustainableenergyfutureandservesastheprincipalplatformforinternationalco-operation,acentreofexcellence,andarepositoryofpolicy,technology,resourceandfinancialknowledgeonrenewableenergy.IRENApromotesthewidespreadadoptionandsustainableuseofallformsofrenewableenergy,includingbioenergy,geothermal,hydropower,ocean,solarandwindenergy,inthepursuitofsustainabledevelopment,energyaccess,energysecurityandlow-carboneconomicgrowthandprosperity.
ABOUTBLUERISK
Blueriskisawaterstrategyanddataanalyticsconsultancyfocusedonenhancingresilienceandreducingriskinthefaceofemergingwaterchallenges.
Bluerisk
ACKNOWLEDGEMENTS
ThereportwasdevelopedundertheguidanceofUteCollieracting-Director,IRENAKnowledgePolicyandFinanceCentreandauthoredbyEmanueleBianco(IRENA),TianyiLuo(Bluerisk),andDivyamNagpal(ex-IRENA).
IRENAcolleaguesAnn-KathrinLipponer,LuisJaneiroandFranciscoBoshellprovidedvaluableinput.
AnetaCornell(Ecolab),LorenzoRosa(StanfordUniversity),ChaoZhangandYinshuangXia(TongjiUniversity),providedtechnicalcontributionstothereport.MarinaMelnikovaandYuryMelnikov(Mylonastars)providedusefulcontributionsandobservations.
Thereportbenefitedfromthereviewsandcommentsofexperts,includingAlistairWyness,RachaelRaid(BP),NitinBassi(CEEW),YuZhang,ZiyanSha(ChinaHydrogenEnergyIndustryPromotionAssociation),CristianCarraretto,RobertoGonzales(EBRD),AnetaCornell,EmilioTenuta(Ecolab),MassimoSantarelli(PolytechnicUniversityofTurin),AlejandroLongueira(RolandBerger)andSmeetaFokeer(UNIDO).
PublicationsupportwasprovidedbyFrancisFieldandStephanieClarke(IRENA).ThereportwaseditedbyFayreMakeig,withdesignprovidedbyElkanodata.
Forfurtherinformationortoprovidefeedback:publications@
DISCLAIMER
Thispublicationandthematerialhereinareprovided“asis”.AllreasonableprecautionshavebeentakenbyIRENAtoverifythereliabilityofthematerialinthispublication.However,neitherIRENAnoranyofitsofficials,agents,dataorotherthird-partycontentprovidersprovidesawarrantyofanykind,eitherexpressedorimplied,andtheyacceptnoresponsibilityorliabilityforanyconsequenceofuseofthepublicationormaterialherein.
TheinformationcontainedhereindoesnotnecessarilyrepresenttheviewsofallMembersofIRENA.ThementionofspecificcompaniesorcertainprojectsorproductsdoesnotimplythattheyareendorsedorrecommendedbyIRENAinpreferencetoothersofasimilarnaturethatarenotmentioned.ThedesignationsemployedandthepresentationofmaterialhereindonotimplytheexpressionofanyopiniononthepartofIRENAconcerningthelegalstatusofanyregion,country,territory,cityorareaorofitsauthorities,orconcerningthedelimitationoffrontiersorboundaries.
Tableofcontents
Glossary5
Executivesummary
6
Chapter1
Introductiontothehydrogen-waternexus
14
Chapter2
Areviewofwaterquantityrequirements
incommercial-scalehydrogenproduction
21
Chapter3
Waterfootprintandrisksofglobalhydrogenproduction
32
Chapter4
Deep-diveanalysesofnorthernChina,theGulfandEurope
42
Chapter5
ConclusionsandRecommendations
54
References
59
Appendix
63
-2-
Figures
FigureS1
Acomparisonofaveragewaterwithdrawalandconsumptionintensitiesbyhydrogenproductiontechnology
7
FigureS2
Currentandprojectedfreshwaterwithdrawalforglobal
hydrogenproduction,bypathway
9
Figure2.1
Schematicsofprocess-specificwaterwithdrawalandconsumption
inlitresfortypicalhydrogentechnologiestogenerate1kilogrammeofhydrogen
24
Figure2.2
Shareofthewaterwithdrawalneedsofproductionandcoolingintheoverallwaterdemandofhydrogenproductionexamples
26
Figure2.3
Acomparisonofaveragewaterwithdrawalandconsumptionintensitiesbyhydrogenproductiontechnology
28
Figure2.4
Relationsbetweenhydrogenconversionefficiencyandwaterwithdrawalandconsumptionintensitiesofatypicalelectrolysisproject
30
Figure2.5
Annualwaterwithdrawaloftypicalhydrogenproductionprojects,thermalpowerplantsandmunicipalities
31
Figure3.1
Currentandprojectedfutureglobalhydrogenproductionunderthe1.5°CScenario
33
Figure3.2
Currentandprojectedfreshwaterwithdrawalforglobal
hydrogenproduction,bypathway
34
Figure3.3
Freshwaterforhydrogenproductionandcooling,todayto2050
36
Figure3.4
Globalwaterstressconditionsandgreenandbluehydrogenprojectlocationsfor2040
38
Figure3.5
Distributionofglobaloperationalandplannedgreenandbluehydrogenproductioncapacitiesbywaterstresslevel,
todayandin2040
40
Figure3.6
Distributionofglobaloperationalandplannedgreenandbluehydrogenproductioncapacitiesbywaterstresslevel
andregionin2040
41
Figure4.1
Hydrogen-producingcoalchemicalplantsandlevels
ofwaterstressintheYellowRiverBasin
42
Figure4.2
Annualwaterwithdrawalandconsumptionduetocoal-basedhydrogenproductionintheYellowRiverBasin,byprovince
43
-3-
Figure4.3Distributionofhydrogen-producingcoalchemicalplants44
intheYellowRiverBasinbycurrentwaterstresslevel
Figure4.4Annualwaterwithdrawalandconsumptionrequirements45
ofcoal-basedhydrogenproductionintheYellowRiver
Basinunderfourscenarios
Figure4.5HydrogenplantsintheGulfCooperationCouncilcountries46
andtheregion’scurrentwaterstressconditions
Figure4.6Currentandprojectedfuturehydrogenproduction47
oftheGulfCooperationCouncilcountries
Figure4.7Currentandprojectedseawaterwithdrawalsanddesalinated48
seawaterrequirementsofhydrogenproduction
intheGulfCooperationCouncilcountries
Figure4.8AnoverviewofhydrogenprojectsinEurope
49
Figure4.9Amapofwaterstressandoperationalandplanned
50
hydrogenprojectsbyproductiontechnologyinEurope
Figure4.10ThedistributionofEurope’soperationalandplanned51
hydrogenprojectsbywaterstresslevelsin2040
Figure4.11CurrentandprojectedhydrogenproductioninEurope
52
Figure4.12Currentandprojectedfuturefreshwaterwithdrawaland
53
consumptionrequirementsofhydrogenproductioninEurope
Tables
Table2.1Asummaryofwaterwithdrawalandconsumptionintensities29
byhydrogenproductiontechnology
Table3.1Currentandprojectedfreshwaterwithdrawalandconsumption37
forhydrogenproduction(billioncubicmetres),todayto2050
TableA1Waterwithdrawalandconsumptionintensitydatasources
63
Boxes
Box3.1HydrogenintheWorldEnergyTransitionsOutlook
32
Box3.2Whatiswaterstress?
39
-4-
Abbreviations
AEM
anionexchangemembrane
ATR
auto-thermalreforming
CCS
carboncaptureandstorage
CCUS
carboncapture,utilisationandstorage
GCCGulfCooperationCouncil
GHGgreenhousegases
H2hydrogen
PEMprotonexchangemembrane
PVphotovoltaic
SDG
SustainableDevelopmentGoals
SMR
steammethanereforming
SOEC
solidoxideelectrolysercells
Unitsofmeasure
GWgigawatt
kgkilogram
ktkilotonne
Llitre
m3cubicmetre
Mtmegatonne
-5-
Glossary
Blowdownwater:Waterdrainedintentionallyfromcoolingsystemstopreventmineralbuild-up.
Cycleofconcentration:Ameasureofthebuild-upofdissolvedmineralsincoolingsystems.Thecycleiscalculatedbycomparingtheconcentrationofaparticulardissolvedsolidinthewatercomingoutofacoolingsystemtoitsconcentrationinthewaterflowingintothesystem.
Deionisedwater:Atypeofhighlypurifiedwaterthatdoesnotcontainanyatoms,ionsormolecules.Deionisationremovesdissolvedsubstanceslikesodiumchloride,minerals,carbondioxide,organicpollutantsandvariousothercontaminantsfromwater.
Makeupwater:Thewateraddedbackintoacoolingsystemtoreplacewaterlostduetoevaporation,leaks,etc.
Permeaterate:Inmembrane-basedwatertreatmentsystems,theratioofthevolumeofwaterpassingthroughthemembranetothetotalquantityofrawwater.
Waterwithdrawal:Measuredbythequantityofwaterwithdrawnfromasource(e.g.river,lake,groundwater)foruse.
Waterwithdrawal/consumptionintensity:Thequantityofwaterwithdrawnfororconsumedinthegenerationofaunitofaproduct(e.g.amegawatthourofenergy,amegatonneofhydrogen).
Waterconsumption:Theportionofwithdrawnwaterthatisnotreturnedtothesource.
Waterstress:Measuredusingtheratioofthetotalwaterwithdrawaltotheavailablerenewablefreshwatersupply.Itshouldbecalculatedatawatershedscale.Waterstressposessignificantriskstohumanandenvironmentalwell-beingandisaproxyforwatercompetitionamongsectorsanduses.
EXECUTIVESUMMARY
-6-
Executivesummary
Theenergysectoristhelargestwateruserofallindustrialsectors.Waterisrequiredinmanyofitsprocesses,fromfuelextractiontoelectricitygeneration.AsseenintherecentnuclearpowerplantshutdownsinEuropein2022,watershortagescansignificantlydisruptthesector.Andthedisruptionsarelikelytocontinueandtobecomeevenmorefrequent,especiallyasextremeweathereventsintensifyamidachangingclimate.Toaddresstherisingclimaterisks,theenergysectorisalreadyestablishinggoodpracticesforintegratingwaterconsiderationsintoplanning.Thesectorcanmitigateitswaterrisksbytransitioningtorenewableenergysources,whichconsumelesswaterthantraditionalfossilfuels.
Cleanhydrogenhasemergedasaviablealternativeinthefightagainstclimatechange.Hydrogenisagamechanger,especiallyfor“hardtoabate”,suchassteelmaking,chemicalproduction,aviation,shippingandtrucktransport.Assessingthewateruseimplicationsofhydrogenproduction,especiallyinwater-stressedareas,isessentialinmanagingpotentialdisruptionstoproduction.
Allhydrogenproductiontechnologiesrequirewaterasaninput.Waterisneedednotonlyinproductionbutalsoforcooling.Thewithdrawalandconsumptionofwaterforcleanhydrogenproductionhavebeendebated,yettoooftenthediscussionsarenotinformedbyin-depthknowledgeofthesestill-nascenttechnologies.
Thisreport,compiledbytheInternationalRenewableEnergyAgency(IRENA)andBluerisk,seekstoanswersomeofthesequestions.
Howmuchwaterdoesahydrogenplantactuallyconsume?
Thisreportreviewsthewaterwithdrawalandconsumptionrequirementsofvarioushydrogenproductiontechnologiesindetail.Datahavebeensourcedfrominterviewswithindustryexpertsandareviewofexistingliterature,sheddinglightonthewaterimplicationsofscalingupcleanhydrogenproduction.AveragewaterwithdrawalandconsumptionintensityandrangesarevisualisedinFigureS1.
Greenhydrogenisthemostwaterefficientofallcleanhydrogentypes.Itisfoundthatonaverage,protonexchangemembrane(PEM)electrolysishasthelowestwaterconsumptionintensityatabout17.5litresperkilogrammeofhydrogen(L/kg).AlkalineelectrolysisfollowsPEMelectrolysis,withawaterconsumptionintensityof22.3L/kg.Thesemaybecomparedwithsteammethanereforming–carboncapture,utilisationandstorage(SMR-CCUS),at32.2L/kg,andautothermalreforming(ATR)-CCUSat24.2L/kg.
WATERFORHYDROGENPRODUCTION
-7-
FIGURES1Acomparisonofaveragewaterwithdrawalandconsumptionintensitiesbyhydrogenproductiontechnology
Averagewaterintensity(L/kg)
Coalgasi?cation
49.8
31.0
Naturalgas-SMR
20.0
17.5
Coalgasi?cation-CCUS
80.2
49.4
Naturalgas-SMR-CCUS
36.732.2
Naturalgas-ATR-CCUS
30.824.2
Electrolysis-Alkaline
32.2
22.3
Electrolysis-PEM
25.717.5
WithdrawalConsumption
Note:Tapwater(orsourceswithsimilarwaterquality)is(are)usedorassumedtobethewatersource(s)behindthesedatapoints.Forbluehydrogen,thecoolingrequirementsforCCUSsystemsareincluded.ForPEMandATR,availabledatapointsarelimitedsincethesetechnologiesarerelativelynew–thusthemuchsmallerrangesofvalues.ATR=autothermalreforming;CCUS=carboncapture,utilisationandstorage;kg=kilogramme;L=litre;PEM=protonexchangemembrane;SMR=steammethanereforming.
Coalgasificationisbyfarthemostwaterintensiveofavailabletechnologies;itwouldbeabout60%moreintensiveifequippedwithCCUS.Coalgasificationhasawaterwithdrawalrequirementofabout50L/kgandconsumes31L/kg,onaverage–roughlytwicePEM’swaterwithdrawalandconsumptionrequirements.EquippedwithCCUS,coalgasification’swithdrawalaswellasconsumptionrequirementscould furtherincreaseto80.2and49.4L/kg,respectively.Acoalgasificationhydrogenplantproducing237kilotonnes(kt)ofhydrogenperyearandequippedwithCCUSwouldwithdrawabout19millioncubicmetres(m3)ofwaterannually;thisvolumeofwatercouldsupporthalfthewaterdemandofthecityofLondonforanentireyear.
EXECUTIVESUMMARY
-8-
Waterisrequiredasaninputforproductionandasacoolingmediumforalltypesofhydrogenproduction.Dependingonthetechnology,theshareofwithdrawalforcoolingcanrangefrom14%to92%.Theshareofwaterwithdrawalforcoolingisthelowestforgreyhydrogenproduction,atabout14%.Greenandbrownhydrogen’ssharesare56%and52%,respectively.Bluehydrogenproductionrequiresmorewaterforcooling,duetothesignificantwaterrequirementsofCCUSsystemsforheattransfer.Coolingcanaccountforupto92%ofthetotalwithdrawalrequirementofbluehydrogen,accordingtodatafromtheNationalEnergyTechnologyLaboratoryintheUnitedStates.However,moreevidenceisneededbeforeageneralproduction-coolingratiocanbedeterminedwithoutdispute.
Forevery1percentagepointincreaseinelectrolysisefficiency,thewaterwithdrawalaswellasconsumptionrequirementsofgreenhydrogenproductionlessenbyabout2%.Thisisprimarilybecause,forthesametypeofhydrogenproductiontechnology,themoreenergyefficientthesystemis,thelesswasteheatneedstobetransferred;thismeanslesswaterisrequiredforcooling.
Whatwillbetheglobalimpactofcleanhydrogen?
Thisreportpresentsacomprehensiveanalysisofthewaterfootprintandrisksassociatedwithcurrentandprojectedfutureglobalhydrogenproduction.TheanalysisisbasedonIRENA’s1.5°CScenario,whichprojectssubstantialgrowthinhydrogenproductionby2050.
WATERFORHYDROGENPRODUCTION
-9-
Annualfreshwaterwithdrawal
(billionm3)
Today,about2.2billionm3offreshwateriswithdrawnforglobalhydrogenproductioneveryyear;thisaccountsfor0.6%oftheenergysector’stotalfreshwaterwithdrawal.AsillustratedinFigureS2,greyhydrogenproductionaccountsforabout59%oftheglobalfreshwaterwithdrawalforhydrogenproduction,brownhydrogen40%,andtherestisfromgreenandbluehydrogen.
Freshwaterwithdrawalsforglobalhydrogenproductioncouldmorethantripleby2040andincreasesix-foldby2050,comparedwithtoday.Drivenbythesignificantexpansionofglobaldemandforhydrogen,thetotalfreshwaterwithdrawalrequiredbyglobalhydrogenproductionisprojectedtobeabout7.3billionm3by2040and12.1billionm3by2050,factoringintechnologyadvancements.Hydrogenproduction’sshareoftotalfreshwaterwithdrawnfortheenergysectorcouldrisefrom0.6%todayto2.4%by2040.
FIGURES2Currentandprojectedfreshwaterwithdrawalforglobalhydrogenproduction,bypathway
14
11
7
4
0
12.1
0.6
7.3
3.2
11.5
2.2
1.3
0.9
4.1
2050
2040
Current
BrownH2GreyH2BlueH2GreenH2
Note:Tapwater(orwatersourceswithsimilarwaterquality)is(are)assumedtobethewatersource(s).Projecteddesalination-basedandseawater-cooledhydrogenproduction(e.g.intheGCCcountries)isexcluded.BlueH2includesSMR-CCUS,ATR-CCUSandcoal-CCUS,withtheshareofATR-CCUSassumedtograduallyincreaseto75%by2050.CoolinginblueH2productionincludesthecoolingdemandduetoCCUSsystems.GreenH2includesbothalkalineandPEMelectrolysiswiththeshareofPEMelectrolysisassumedtograduallyincreaseto75%by2050.Moderategradualincreasesinelectrolysisefficiency(7.5percentagepointsforalkalineelectrolysisand4.5percentagepointsforPEM-electrolysisoverthecomingthreedecades)areassumed.Forcalculationpurposes,thecoolingandproductionsharesofblueH2inCase2fromLewisetal.(2022)areapplied.ATR=autothermalreforming;CCUS=carboncapture,utilisationandstorage;H2=hydrogen;PEM=protonexchangemembrane;SMR=steammethanereforming.
EXECUTIVESUMMARY
-10-
Andthelocalimpact?
Althoughthewaterconsumedforhydrogenproductionwillnothaveasignificantimpactglobally,theimportanceofconsideringlocalwatercontextswhenplanninghydrogendevelopmentcannotbeoverstated,especiallychronicwaterriskssuchaswaterstress.
Morethan35%oftheglobalgreenandbluehydrogenproductioncapacity(inoperationandplanned)islocatedinhighlywater-stressedregions.UsingtheAqueductWaterRiskAtlas,thisreportassesseswaterstressconditionsinlocationswhereglobalgreenandbluehydrogenprojectsarealreadyoperatingorbeingplanned.KeyregionalfindingsrevealthatIndiaislikelytohave99%ofitshydrogencapacityinextremelywater-stressedareasby2040,whileChinaandtheEU-27alsofacesignificantwaterstresschallenges.TheUnitedStatesandotherGroupofTwenty(G20)countriesareexposedtowaterstresstovaryingdegrees.Hydrogenproductionunderwaterstressconditionswouldfacefrequentdisruption,besidesbeingexposedtotheriskofuncertaintiessurroundingenvironmentalregulations.
Thereportpresentsin-depthanalysesofthewaterchallengesfacedbythehydrogenproductionindustryinNorthernChina,theGulfCooperationCouncil(GCC)countriesandEurope.
WATERFORHYDROGENPRODUCTION
-11-
NorthernChina
CoalchemicalplantsinnorthernChinacontributesignificantlytothecountry’scurrenthydrogenproduction,buttheyrequirelargeamountsoffreshwatertooperate.Forexample,freshwaterwithdrawalsforhydrogenproductionintheprovinceofShanxiareestimatedtoaccountforover30%oftheprovince’soverallindustrialwaterwithdrawal.Mostofthesecoal-firedchemicalplantsarelocatedintheYellowRiverBasin,aregionwherewaterisextremelyscarce.Over70%oftheseplantsoperateinareasunderseverewaterstress,makingthemvulnerabletofluctuationsinwateravailabilityandchangingregulations.
Continuousexpansionofthehydrogenindustryisprojectedtodriveupwaterdemandsignificantlyby2030ifcoal-basedproductioncontinuestodominate.Thiswouldbringtheregion’swaterresourcesunderevenmorestress.Atransitiontoalternativetechnologiessuchasalkalineelectrolysisbecomescrucialtosustainablyaddressthesechallengessincethesetechnologiescanhelpmeetfuturedemandforhydrogen,whilereducingfreshwaterwithdrawalandconsumptiontolevelsevenbelowthoseseentoday.Alternativetechnologiesarethuspromisingsolutionstowater-relatedconcerns.
GulfCooperationCouncil
IntheGCCcountries,thepursuitofhydrogenproductionpresentsuniquechallengesandopportunities.Thesecountriesaremajorproducersofgreyhydrogenfromnaturalgasandofferscopeforatransitiontogreenhydrogenproduction.However,waterscarcityisasignificantissueintheGCCcountries,whichrelyheavilyondesalinatedwaterforhydrogenproductionandemployonce-throughcoolingsystems,raisingbothenvironmentalandeconomicconcerns,includingthermalandbrinepollutionandhighenergycosts.
Astheregionaimstoproducemorehydrogenby2040,atriplingofseawaterwithdrawalisprojected.Thisunderlinesanurgentneedforsustainablewatermanagementpractices.AtransitiontoalternativeproductiontechnologiessuchasalkalineandPEMelectrolysiscaneffectivelyreduceseawaterwithdrawalandthedemandfordesalinatedwater,addressingthesechallengeswhilemakingthehydrogenproductionindustrymoresustainableandresponsible.
Europe
ThepursuitofgreenhydrogeninEuropeispivotaltotheregion’sambitiousemissionmitigationgoals.However,Europefacesuniquechallenges,notablyincreasedoccurrencesofdroughts,whichimpactenergyproductionandexacerbatewaterstress.EventhoughEurope’shydrogenconsumptionisrelativelylowtoday,theregionhasarapidlygrowinghydrogenindustry,whichhasprojectslocatedacrossthecontinent,manynearcoastlinesandmajorrivers.Importantly,over23%ofEurope’sgreenhydrogenprojectsand14%ofitsbluehydrogenprojectsarelikelytobeinareasunderhighorextremelyhighwaterstressby2040,potentiallyincreasingthecompetitionforlocalwateruse.
AsEuropeshiftsitshydrogenproductionmix,thewaterdemandisexpectedtoincreasesignificantlyby2040.Thiswillplacenewpressuresonwaterresourcesinwater-stressedregions.Toensureasustainableandenvironmentallyresponsiblehydrogenindustry,Europemustintegratewaterconsiderationsintoitsenergyplanninganddevelopmentdecisionmaking.Itmustcarefullymanagewatercompetitionandpromotewater-efficienttechnologiessuchasPEM-basedelectrolysis.
EXECUTIVESUMMARY
-12-
So,whatshouldwedo?
Thereportendswithasetofrecommendations,basedontheresultsoftheanalysis.Theserecommendationsaredesignedtoreducetheexposureoffuturecleanhydrogenprojectstowater-shortage-relatedrisks.
→Greenhydrogenprojectsshouldbeprioritisedforfuturehydrogendevelopment.
→Water-relatedimpactsandpotentialrisksneedtobecarefullyevaluatedinhydrogenproductiondevelopmentplans,particularlyinwater-stressedregionswherestringentwateruseregulationsmustbeestablishedforthesector,andenforced.
→Retiringfossil-fuel-basedhydrogenplantsandreplacingthemwithgreenhydrogenshouldbeprioritisedinhydrogendevelopmentplans,particularlyinareaswhere
waterisalreadyscarce.
→Waterwithdrawalandconsumptionshouldbeconsideredasperformanceindicatorsofhydrogenproductionprojectsforpre-operationalevaluationpurposesandbe
meteredandmonitoredduringoperation.
→Regulationsandfinancialincentivesshouldfavourprojectsdemonstratinghigherefficiencyinenergyconversionandwaterconsumption.
→Moreinvestmentandresearcharerequiredtoimprovetheefficiencyofcommercial-scaleelectrolysersandreducetheconsumptionoffreshwaterforcooling.
→Hydrogenproductionprojectsinregionswherewaterisalreadyscarceshouldbeincentivisedtousewater-efficientcoolingtechnologiessuchasaircooling.
→Inpresentandfuturefreshwater-stressedcoastalareas,utilisingseawaterforhydrogenproductionandcoolingprocessesshouldbeincentivised,evenasregulationsforthermalpollutionandbrinemanagementareenforced.
-13-
WATERFORHYDROGENPRODUCTION
CHAPTER1:INTRODUCTIONTOTHEHYDROGEN-WATERNEXUS
-14-
Chapter1:Introductiontothe
hydrogen-waternexus
In2015,partiestotheParisAgreementconcurredthaturgentactiontodecarbonisetheirnationaleconomiesisnecessarytomitigatetheharmfuleffectsofclimatechange.Later,in2018,theIntergovernmentalPanelonClimateChangereleasedthereport“GlobalWarmingof1.5°C”,whichcalledforpolicymakerstointensifyandaccelerateeffortstomitigategreenhousegas(GHG)emissions,limittheglobaltemperatureriseandaddresstheclimatecrisis(IPCC,2018).
Accordingtothereport,thereisanarrowwindowofopportunitytoenactmeaningfulmeasurestopreventfurthertemperatureincreaseandaddresstheclimatecrisis.PolicymakersmustthereforestrengtheneffortstoreduceGHGemissionsfromalleconomicactivitiesasmuchaspossible.Solutionsthatreduceonlyasmallportionofemissionsareinadequate;itisnowcriticaltoprioritiseoptionsthatcanprovidesignificantemissionreductions.
Meanwhile,certainindustryandtransportsubsectorsareparticularlydifficulttodecarbonise,frombothatechnicalandeconomicperspective,andcorrespondingsolutionsarelimitedinnumber.Thesesectors,knownas“hard-to-abate”sectors,includesteelmaking,basicchemicalproduction,long-haulaviation,shippingandtrucktransport.
WATERFORHYDROGENPRODUCTION
-15-
Enterhydrogen,themostabundantchemicalintheuniverse.Around95megatonnes(Mt)ofhydrogenwereproducedfromfossilfuelsin2022–forrefineries,theproductionofbasicchemicalsandafewotheruses(IEA,2023).
Hydrogencanbeusedasafeedstock-toproducesteel,ammonia,methanol,fertilisersandsyntheticfuel,andtopowervehicles-orstored,fortimeswhenrenewablesareataseasonallow.TheInternationalRenewableEnergyAg
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年安慶市迎江區事業單位公開招聘工作人員筆試歷年典型考題及考點剖析附帶答案詳解
- 怎樣下載數學教學課件
- 點亮新學期開啟新征程-2025年秋季高一開學第一課主題班會課件-2025-2026學年高中主題班會
- 第十章化工機泵第五節風機37課件
- 第三章防火防爆技術23課件
- 地鐵檢修教學課件
- 2025年二級注冊建筑師考試真題及答案
- 口腔基礎知識課件下載
- 小學生秋冬季節疾病課件
- 2025年音樂版權運營與流媒體平臺付費模式協同發展研究報告
- 公路應急值守管理辦法
- 財務離職保密協議及競業限制合同范本
- 市政工程施工員考試試題及答案
- 2025年陜西行政執法資格考試備考模擬題及答案(題型)
- 實驗室培育鉆石行業技術發展趨勢報告
- 2025年領英大制造行業人才全球化報告-馬來西亞篇
- 心肺復蘇雙人培訓
- 2025年高考化學試卷(廣東卷)(空白卷)
- 2025年北京市高考英語試卷真題(含答案解析)
- 初級社工職業道德試題及答案
- 國際壓力性損傷-潰瘍預防和治療臨床指南(2025年版)解讀課件
評論
0/150
提交評論