




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
陜西省西安市雁塔區電子科技中學2024年中考數學最后一模試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.由五個相同的立方體搭成的幾何體如圖所示,則它的左視圖是()A. B.C. D.2.下列所給函數中,y隨x的增大而減小的是()A.y=﹣x﹣1 B.y=2x2(x≥0)C. D.y=x+13.鄭州地鐵Ⅰ號線火車站站口分布如圖所示,有A,B,C,D,E五個進出口,小明要從這里乘坐地鐵去新鄭機場,回來后仍從這里出站,則他恰好選擇從同一個口進出的概率是()A. B. C. D.4.“保護水資源,節約用水”應成為每個公民的自覺行為.下表是某個小區隨機抽查到的10戶家庭的月用水情況,則下列關于這10戶家庭的月用水量說法錯誤的是()月用水量(噸)4569戶數(戶)3421A.中位數是5噸 B.眾數是5噸 C.極差是3噸 D.平均數是5.3噸5.某校決定從三名男生和兩名女生中選出兩名同學擔任校藝術節文藝演出專場的主持人,則選出的恰為一男一女的概率是()A. B. C. D.6.如圖,在⊙O中,O為圓心,點A,B,C在圓上,若OA=AB,則∠ACB=()A.15° B.30° C.45° D.60°7.如圖,已知在Rt△ABC中,∠ABC=90°,點D是BC邊的中點,分別以B、C為圓心,大于線段BC長度一半的長為半徑圓弧,兩弧在直線BC上方的交點為P,直線PD交AC于點E,連接BE,則下列結論:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正確的是()A.①②③ B.①②④ C.①③④ D.②③④8.如圖,中,E是BC的中點,設,那么向量用向量表示為()A. B. C. D.9.已知一元二次方程2x2+2x﹣1=0的兩個根為x1,x2,且x1<x2,下列結論正確的是()A.x1+x2=1 B.x1?x2=﹣1 C.|x1|<|x2| D.x12+x1=10.如圖是某公園的一角,∠AOB=90°,弧AB的半徑OA長是6米,C是OA的中點,點D在弧AB上,CD∥OB,則圖中休閑區(陰影部分)的面積是()A.米2 B.米2 C.米2 D.米211.如圖,△ABC中,D為BC的中點,以D為圓心,BD長為半徑畫一弧交AC于E點,若∠A=60°,∠B=100°,BC=4,則扇形BDE的面積為何?()A. B. C. D.12.如圖顯示了用計算機模擬隨機投擲一枚圖釘的某次實驗的結果.下面有三個推斷:①當投擲次數是500時,計算機記錄“釘尖向上”的次數是308,所以“釘尖向上”的概率是0.616;②隨著試驗次數的增加,“釘尖向上”的頻率總在0.618附近擺動,顯示出一定的穩定性,可以估計“釘尖向上”的概率是0.618;③若再次用計算機模擬此實驗,則當投擲次數為1000時,“釘尖向上”的頻率一定是0.1.其中合理的是()A.① B.② C.①② D.①③二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,矩形ABCD的邊AB在x軸上,AB的中點與原點O重合,AB=2,AD=1,點E的坐標為(0,2).點F(x,0)在邊AB上運動,若過點E、F的直線將矩形ABCD的周長分成2:1兩部分,則x的值為__.14.若,,則的值為________.15.同一個圓的內接正方形和正三角形的邊心距的比為_____.16.如圖,AC、BD為圓O的兩條垂直的直徑,動點P從圓心O出發,沿線段OC-A.B.C.D.17.如圖為兩正方形ABCD、CEFG和矩形DFHI的位置圖,其中D,A兩點分別在CG、BI上,若AB=3,CE=5,則矩形DFHI的面積是_____.18.不等式組的解集為______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)為了響應“足球進校園”的目標,某校計劃為學校足球隊購買一批足球,已知購買2個A品牌的足球和3個B品牌的足球共需380元;購買4個A品牌的足球和2個B品牌的足球共需360元.求A,B兩種品牌的足球的單價.求該校購買20個A品牌的足球和2個B品牌的足球的總費用.20.(6分)如圖①,有兩個形狀完全相同的直角三角形ABC和EFG疊放在一起(點A與點E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜邊上的中點.
如圖②,若整個△EFG從圖①的位置出發,以1cm/s的速度沿射線AB方向平移,在△EFG平移的同時,點P從△EFG的頂點G出發,以1cm/s的速度在直角邊GF上向點F運動,當點P到達點F時,點P停止運動,△EFG也隨之停止平移.設運動時間為x(s),FG的延長線交AC于H,四邊形OAHP的面積為y(cm2)(不考慮點P與G、F重合的情況).
(1)當x為何值時,OP∥AC;
(2)求y與x之間的函數關系式,并確定自變量x的取值范圍;
(3)是否存在某一時刻,使四邊形OAHP面積與△ABC面積的比為13:24?若存在,求出x的值;若不存在,說明理由.(參考數據:1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)21.(6分)如圖,一次函數y=kx+b的圖象與反比例函數y=的圖象交于點A(-3,m+8),B(n,-6)兩點.求一次函數與反比例函數的解析式;求△AOB的面積.22.(8分)已知反比例函數y=kx的圖象過點(1)試求該反比例函數的表達式;(2)M(m,n)是反比例函數圖象上的一動點,其中0<m<3,過點M作直線MB∥x軸,交y軸于點B;過點A作直線AC∥y軸,交x軸于點C,交直線MB于點D.當四邊形OADM的面積為6時,請判斷線段BM與DM的大小關系,并說明理由.23.(8分)先化簡:,然后從的范圍內選取一個合適的整數作為x的值代入求值.24.(10分)如圖,已知拋物線與x軸負半軸相交于點A,與y軸正半軸相交于點B,,直線l過A、B兩點,點D為線段AB上一動點,過點D作軸于點C,交拋物線于點
E.(1)求拋物線的解析式;(2)若拋物線與x軸正半軸交于點F,設點D的橫坐標為x,四邊形FAEB的面積為S,請寫出S與x的函數關系式,并判斷S是否存在最大值,如果存在,求出這個最大值;并寫出此時點E的坐標;如果不存在,請說明理由.(3)連接BE,是否存在點D,使得和相似?若存在,求出點D的坐標;若不存在,說明理由.25.(10分)某電器商場銷售甲、乙兩種品牌空調,已知每臺乙種品牌空調的進價比每臺甲種品牌空調的進價高20%,用7200元購進的乙種品牌空調數量比用3000元購進的甲種品牌空調數量多2臺.求甲、乙兩種品牌空調的進貨價;該商場擬用不超過16000元購進甲、乙兩種品牌空調共10臺進行銷售,其中甲種品牌空調的售價為2500元/臺,乙種品牌空調的售價為3500元/臺.請您幫該商場設計一種進貨方案,使得在售完這10臺空調后獲利最大,并求出最大利潤.26.(12分)如圖,拋物線y=ax2+bx+c(a>0)的頂點為M,直線y=m與拋物線交于點A,B,若△AMB為等腰直角三角形,我們把拋物線上A,B兩點之間的部分與線段AB圍成的圖形稱為該拋物線對應的準蝶形,線段AB稱為碟寬,頂點M稱為碟頂.(1)由定義知,取AB中點N,連結MN,MN與AB的關系是_____.(2)拋物線y=對應的準蝶形必經過B(m,m),則m=_____,對應的碟寬AB是_____.(3)拋物線y=ax2﹣4a﹣(a>0)對應的碟寬在x軸上,且AB=1.①求拋物線的解析式;②在此拋物線的對稱軸上是否有這樣的點P(xp,yp),使得∠APB為銳角,若有,請求出yp的取值范圍.若沒有,請說明理由.27.(12分)(5分)計算:(1
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解題分析】
找到從正面看所得到的圖形即可,注意所有看到的棱都應表現在主視圖中.【題目詳解】解:從正面看第一層是二個正方形,第二層是左邊一個正方形.
故選A.【題目點撥】本題考查了簡單組合體的三視圖的知識,解題的關鍵是了解主視圖是由主視方向看到的平面圖形,屬于基礎題,難度不大.2、A【解題分析】
根據二次函數的性質、一次函數的性質及反比例函數的性質判斷出函數符合y隨x的增大而減小的選項.【題目詳解】解:A.此函數為一次函數,y隨x的增大而減小,正確;B.此函數為二次函數,當x<0時,y隨x的增大而減小,錯誤;C.此函數為反比例函數,在每個象限,y隨x的增大而減小,錯誤;D.此函數為一次函數,y隨x的增大而增大,錯誤.故選A.【題目點撥】本題考查了二次函數、一次函數、反比例函數的性質,掌握函數的增減性是解決問題的關鍵.3、C【解題分析】
列表得出進出的所有情況,再從中確定出恰好選擇從同一個口進出的結果數,繼而根據概率公式計算可得.【題目詳解】解:列表得:ABCDEAAABACADAEABABBBCBDBEBCACBCCCDCECDADBDCDDDEDEAEBECEDEEE∴一共有25種等可能的情況,恰好選擇從同一個口進出的有5種情況,∴恰好選擇從同一個口進出的概率為=,故選C.【題目點撥】此題主要考查了列表法求概率,列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適用于兩步或兩步以上完成的事件;解題時還要注意是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數與總情況數之比.4、C【解題分析】
根據中位數、眾數、極差和平均數的概念,對選項一一分析,即可選擇正確答案.【題目詳解】解:A、中位數=(5+5)÷2=5(噸),正確,故選項錯誤;B、數據5噸出現4次,次數最多,所以5噸是眾數,正確,故選項錯誤;C、極差為9﹣4=5(噸),錯誤,故選項正確;D、平均數=(4×3+5×4+6×2+9×1)÷10=5.3,正確,故選項錯誤.故選:C.【題目點撥】此題主要考查了平均數、中位數、眾數和極差的概念.要掌握這些基本概念才能熟練解題.5、B【解題分析】試題解析:列表如下:∴共有20種等可能的結果,P(一男一女)=.
故選B.6、B【解題分析】
根據題意得到△AOB是等邊三角形,求出∠AOB的度數,根據圓周角定理計算即可.【題目詳解】解:∵OA=AB,OA=OB,∴△AOB是等邊三角形,∴∠AOB=60°,∴∠ACB=30°,故選B.【題目點撥】本題考查的是圓周角定理和等邊三角形的判定,掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半是解題的關鍵.7、B【解題分析】
解:根據作圖過程,利用線段垂直平分線的性質對各選項進行判斷:根據作圖過程可知:PB=CP,∵D為BC的中點,∴PD垂直平分BC,∴①ED⊥BC正確.∵∠ABC=90°,∴PD∥AB.∴E為AC的中點,∴EC=EA,∵EB=EC.∴②∠A=∠EBA正確;③EB平分∠AED錯誤;④ED=AB正確.∴正確的有①②④.故選B.考點:線段垂直平分線的性質.8、A【解題分析】
根據,只要求出即可解決問題.【題目詳解】解:四邊形ABCD是平行四邊形,,,,,,,故選:A.【題目點撥】本題考查平面向量,解題的關鍵是熟練掌握三角形法則,屬于中考常考題型.9、D【解題分析】【分析】直接利用根與系數的關系對A、B進行判斷;由于x1+x2<0,x1x2<0,則利用有理數的性質得到x1、x2異號,且負數的絕對值大,則可對C進行判斷;利用一元二次方程解的定義對D進行判斷.【題目詳解】根據題意得x1+x2=﹣=﹣1,x1x2=﹣,故A、B選項錯誤;∵x1+x2<0,x1x2<0,∴x1、x2異號,且負數的絕對值大,故C選項錯誤;∵x1為一元二次方程2x2+2x﹣1=0的根,∴2x12+2x1﹣1=0,∴x12+x1=,故D選項正確,故選D.【題目點撥】本題考查了一元二次方程的解、一元二次方程根與系數的關系,熟練掌握相關內容是解題的關鍵.10、C【解題分析】
連接OD,∵弧AB的半徑OA長是6米,C是OA的中點,∴OC=OA=×6=1.∵∠AOB=90°,CD∥OB,∴CD⊥OA.在Rt△OCD中,∵OD=6,OC=1,∴.又∵,∴∠DOC=60°.∴(米2).故選C.11、C【解題分析】分析:求出扇形的圓心角以及半徑即可解決問題;詳解:∵∠A=60°,∠B=100°,∴∠C=180°﹣60°﹣100°=20°,∵DE=DC,∴∠C=∠DEC=20°,∴∠BDE=∠C+∠DEC=40°,∴S扇形DBE=.故選C.點睛:本題考查扇形的面積公式、三角形內角和定理等知識,解題的關鍵是記住扇形的面積公式:S=.12、B【解題分析】①當頻數增大時,頻率逐漸穩定的值即為概率,500次的實驗次數偏低,而頻率穩定在了0.618,錯誤;②由圖可知頻數穩定在了0.618,所以估計頻率為0.618,正確;③.這個實驗是一個隨機試驗,當投擲次數為1000時,釘尖向上”的概率不一定是0.1.錯誤,故選B.【題目點撥】本題考查了利用頻率估計概率,能正確理解相關概念是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、或﹣.【解題分析】
試題分析:當點F在OB上時,設EF交CD于點P,可求點P的坐標為(,1).則AF+AD+DP=3+x,CP+BC+BF=3﹣x,由題意可得:3+x=2(3﹣x),解得:x=.由對稱性可求當點F在OA上時,x=﹣,故滿足題意的x的值為或﹣.故答案是或﹣.【題目點撥】考點:動點問題.14、-.【解題分析】分析:已知第一個等式左邊利用平方差公式化簡,將a﹣b的值代入即可求出a+b的值.詳解:∵a2﹣b2=(a+b)(a﹣b)=,a﹣b=,∴a+b=.故答案為.點睛:本題考查了平方差公式,熟練掌握平方差公式是解答本題的關鍵.15、【解題分析】
先畫出同一個圓的內接正方形和內接正三角形,設⊙O的半徑為R,求出正方形的邊心距和正三角形的邊心距,再求出比值即可.【題目詳解】設⊙O的半徑為r,⊙O的內接正方形ABCD,如圖,過O作OQ⊥BC于Q,連接OB、OC,即OQ為正方形ABCD的邊心距,∵四邊形BACD是正方形,⊙O是正方形ABCD的外接圓,∴O為正方形ABCD的中心,∴∠BOC=90°,∵OQ⊥BC,OB=CO,∴QC=BQ,∠COQ=∠BOQ=45°,∴OQ=OC×cos45°=R;設⊙O的內接正△EFG,如圖,過O作OH⊥FG于H,連接OG,即OH為正△EFG的邊心距,∵正△EFG是⊙O的外接圓,∴∠OGF=∠EGF=30°,∴OH=OG×sin30°=R,∴OQ:OH=(R):(R)=:1,故答案為:1.【題目點撥】本題考查了正多邊形與圓、解直角三角形,等邊三角形的性質、正方形的性質等知識點,能綜合運用知識點進行推理和計算是解此題的關鍵.16、C.【解題分析】分析:根據動點P在OC上運動時,∠APB逐漸減小,當P在上運動時,∠APB不變,當P在DO上運動時,∠APB逐漸增大,即可得出答案.解答:解:當動點P在OC上運動時,∠APB逐漸減小;當P在上運動時,∠APB不變;當P在DO上運動時,∠APB逐漸增大.故選C.17、【解題分析】
由題意先求出DG和FG的長,再根據勾股定理可求得DF的長,然后再證明△DGF∽△DAI,依據相似三角形的性質可得到DI的長,最后依據矩形的面積公式求解即可.【題目詳解】∵四邊形ABCD、CEFG均為正方形,∴CD=AD=3,CG=CE=5,∴DG=2,在Rt△DGF中,DF==,∵∠FDG+∠GDI=90°,∠GDI+∠IDA=90°,∴∠FDG=∠IDA.又∵∠DAI=∠DGF,∴△DGF∽△DAI,∴,即,解得:DI=,∴矩形DFHI的面積是=DF?DI=,故答案為:.【題目點撥】本題考查了正方形的性質,矩形的性質,相似三角形的判定和性質,三角形的面積,熟練掌握相關性質定理與判定定理是解題的關鍵.18、1<x≤1【解題分析】解不等式x﹣3(x﹣2)<1,得:x>1,解不等式,得:x≤1,所以不等式組解集為:1<x≤1,故答案為1<x≤1.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)一個A品牌的足球需90元,則一個B品牌的足球需100元;(2)1.【解題分析】
(1)設一個A品牌的足球需x元,則一個B品牌的足球需y元,根據“購買2個A品牌的足球和3個B品牌的足球共需380元;購買4個A品牌的足球和2個B品牌的足球共需360元”列出方程組并解答;(2)把(1)中的數據代入求值即可.【題目詳解】(1)設一個A品牌的足球需x元,則一個B品牌的足球需y元,依題意得:,解得:.答:一個A品牌的足球需40元,則一個B品牌的足球需100元;(2)依題意得:20×40+2×100=1(元).答:該校購買20個A品牌的足球和2個B品牌的足球的總費用是1元.考點:二元一次方程組的應用.20、(1)1.5s;(2)S=x2+x+3(0<x<3);(3)當x=(s)時,四邊形OAHP面積與△ABC面積的比為13:1.【解題分析】
(1)由于O是EF中點,因此當P為FG中點時,OP∥EG∥AC,據此可求出x的值.(2)由于四邊形AHPO形狀不規則,可根據三角形AFH和三角形OPF的面積差來得出四邊形AHPO的面積.三角形AHF中,AH的長可用AF的長和∠FAH的余弦值求出,同理可求出FH的表達式(也可用相似三角形來得出AH、FH的長).三角形OFP中,可過O作OD⊥FP于D,PF的長易知,而OD的長,可根據OF的長和∠FOD的余弦值得出.由此可求得y、x的函數關系式.(3)先求出三角形ABC和四邊形OAHP的面積,然后將其代入(2)的函數式中即可得出x的值.【題目詳解】解:(1)∵Rt△EFG∽Rt△ABC∴,即,∴FG==3cm∵當P為FG的中點時,OP∥EG,EG∥AC∴OP∥AC∴x==×3=1.5(s)∴當x為1.5s時,OP∥AC.(2)在Rt△EFG中,由勾股定理得EF=5cm∵EG∥AH∴△EFG∽△AFH∴,∴AH=(x+5),FH=(x+5)過點O作OD⊥FP,垂足為D∵點O為EF中點∴OD=EG=2cm∵FP=3﹣x∴S四邊形OAHP=S△AFH﹣S△OFP=?AH?FH﹣?OD?FP=?(x+5)?(x+5)﹣×2×(3﹣x)=x2+x+3(0<x<3).(3)假設存在某一時刻x,使得四邊形OAHP面積與△ABC面積的比為13:1則S四邊形OAHP=×S△ABC∴x2+x+3=××6×8∴6x2+85x﹣250=0解得x1=,x2=﹣(舍去)∵0<x<3∴當x=(s)時,四邊形OAHP面積與△ABC面積的比為13:1.【題目點撥】本題是比較常規的動態幾何壓軸題,第1小題運用相似形的知識容易解決,第2小題同樣是用相似三角形建立起函數解析式,要說的是本題中說明了要寫出自變量x的取值范圍,而很多試題往往不寫,要記住自變量x的取值范圍是函數解析式不可分離的一部分,無論命題者是否交待了都必須寫,第3小題只要根據函數解析式列個方程就能解決.21、(1)y=-,y=-2x-1(2)1【解題分析】試題分析:(1)將點A坐標代入反比例函數求出m的值,從而得到點A的坐標以及反比例函數解析式,再將點B坐標代入反比例函數求出n的值,從而得到點B的坐標,然后利用待定系數法求一次函數解析式求解;(2)設AB與x軸相交于點C,根據一次函數解析式求出點C的坐標,從而得到點OC的長度,再根據S△AOB=S△AOC+S△BOC列式計算即可得解.試題解析:(1)將A(﹣3,m+8)代入反比例函數y=得,=m+8,解得m=﹣6,m+8=﹣6+8=2,所以,點A的坐標為(﹣3,2),反比例函數解析式為y=﹣,將點B(n,﹣6)代入y=﹣得,﹣=﹣6,解得n=1,所以,點B的坐標為(1,﹣6),將點A(﹣3,2),B(1,﹣6)代入y=kx+b得,,解得,所以,一次函數解析式為y=﹣2x﹣1;(2)設AB與x軸相交于點C,令﹣2x﹣1=0解得x=﹣2,所以,點C的坐標為(﹣2,0),所以,OC=2,S△AOB=S△AOC+S△BOC,=×2×3+×2×1,=3+1,=1.考點:反比例函數與一次函數的交點問題.22、(1)y=6x;(2)MB=【解題分析】
(1)將A(3,2)分別代入y=kx
,y=ax中,得a、k(2)有S△OMB=S△OAC=12×k=3
,可得矩形OBDC的面積為12;即OC×OB=12
;進而可得m、n的值,故可得BM與DM【題目詳解】(1)將A(3,2)代入y=kx中,得2=k∴反比例函數的表達式為y=6(2)BM=DM,理由:∵S△OMB=S△OAC=12×k∴S矩形OBDC=S四邊形OADM+S△OMB+S△OAC=3+3+6=12,即OC·OB=12,∵OC=3,∴OB=4,即n=4,∴m=6∴MB=32,MD=3-32=3【題目點撥】本題考查了待定系數法求反比例函數和正比例函數解析式,反比例函數比例系數的幾何意義,矩形的性質等知識.熟練掌握待定系數法是解(1)的關鍵,掌握反比例函數系數的幾何意義是解(2)的關鍵.23、,當x=1時,原式=﹣1.【解題分析】
先化簡分式,然后將x的值代入計算即可.【題目詳解】解:原式==.且,∴x的整數有,∴取,當時,原式.【題目點撥】本題考查了分式的化簡求值,熟練掌握分式混合運算法則是解題的關鍵.24、(1);(2)與x的函數關系式為,S存在最大值,最大值為18,此時點E的坐標為.(3)存在點D,使得和相似,此時點D的坐標為或.【解題分析】
利用二次函數圖象上點的坐標特征可得出點A、B的坐標,結合即可得出關于a的一元一次方程,解之即可得出結論;由點A、B的坐標可得出直線AB的解析式待定系數法,由點D的橫坐標可得出點D、E的坐標,進而可得出DE的長度,利用三角形的面積公式結合即可得出S關于x的函數關系式,再利用二次函數的性質即可解決最值問題;由、,利用相似三角形的判定定理可得出:若要和相似,只需或,設點D的坐標為,則點E的坐標為,進而可得出DE、BD的長度當時,利用等腰直角三角形的性質可得出,進而可得出關于m的一元二次方程,解之取其非零值即可得出結論;當時,由點B的縱坐標可得出點E的縱坐標為4,結合點E的坐標即可得出關于m的一元二次方程,解之取其非零值即可得出結論綜上即可得出結論.【題目詳解】當時,有,解得:,,點A的坐標為.當時,,點B的坐標為.,,解得:,拋物線的解析式為.點A的坐標為,點B的坐標為,直線AB的解析式為.點D的橫坐標為x,則點D的坐標為,點E的坐標為,如圖.點F的坐標為,點A的坐標為,點B的坐標為,,,,.,當時,S取最大值,最大值為18,此時點E的坐標為,與x的函數關系式為,S存在最大值,最大值為18,此時點E的坐標為.,,若要和相似,只需或如圖.設點D的坐標為,則點E的坐標為,,當時,,,,為等腰直角三角形.,即,解得:舍去,,點D的坐標為;當時,點E的縱坐標為4,,解得:,舍去,點D的坐標為.綜上所述:存在點D,使得和相似,此時點D的坐標為或.故答案為:(1);(2)與x的函數關系式為,S存在最大值,最大值為18,此時點E的坐標為.(3)存在點D,使得和相似,此時點D的坐標為或.【題目點撥】本題考查了二次函數圖象上點的坐標特征、一次函數圖象上點的坐標特征、三角形的面積、二次函數的性質、相似三角形的判定、等腰直角三角形以及解一元二次方程,解題的關鍵是:利用二次函數圖象上點的坐標特征求出點A、B的坐標;利用三角形的面積找出S關于x的函數關系式;分及兩種情況求出點D的坐標.25、(1)甲種品牌的進價為1500元,乙種品牌空調的進價為1800元;(2)當購進甲種品牌空調7臺,乙種品牌空調3臺時,售完后利潤最大,最大為12100元【解題分析】
(1)設甲種品牌空調的進貨價為x元/臺,則乙種品牌空調的進貨價為1.2x元/臺,根據數量=總價÷單價可得出關于x的分式方程,解之并檢驗后即可得出結論;(2)設購進甲種品牌空調a臺,所獲得的利潤為y元,則購進乙種品牌空調(10-a)臺,根據總價=單價×數量結合總價不超過16000元,即可得出關于a的一元一次不等式,解之即可得出a的取值范圍,再由總利潤=單臺利潤×購進數量即可得出y關于a的函數關系式,利用一次函數的性質即可解決最值問題.【題目詳解】(1)由(1)設甲種品牌的進價為x元,則乙種品牌空調的進價為(1+20%)x元,由題意,得,解得x=1500,經檢驗,x=1500是原分式方程的解,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 養老企業公司管理制度
- 家具美容公司管理制度
- 衛生器械設備管理制度
- 信息系統監理師考試知識積累試題及答案
- 小廠公司食堂管理制度
- 化工藥品試劑管理制度
- 軟件測試文檔的維護與更新策略試題及答案
- 公司申請物資管理制度
- 中醫基礎試題及答案
- 公司物資收發管理制度
- 2025年金融科技創新解讀試題及答案
- 導游知識準備課件
- 2025黑河學院輔導員考試題庫
- 分娩質量管理的相關制度
- 光伏電廠防洪防汛應急預案演練方案
- 鄉鎮環境保護工作制度
- 現場實名制管理制度
- 組織執法類面試題及答案
- 浙江大學《分子生物學原理》2023-2024學年第二學期期末試卷
- 人教部編版道德與法治八年級下冊:2.2 《加強憲法監督 》聽課評課記錄
- 煤礦主通風機電控系統變頻改造裝置安裝方案
評論
0/150
提交評論