2024屆湖北省咸寧市三校中考數學四模試卷含解析_第1頁
2024屆湖北省咸寧市三校中考數學四模試卷含解析_第2頁
2024屆湖北省咸寧市三校中考數學四模試卷含解析_第3頁
2024屆湖北省咸寧市三校中考數學四模試卷含解析_第4頁
2024屆湖北省咸寧市三校中考數學四模試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024學年湖北省咸寧市三校中考數學四模試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.對于兩組數據A,B,如果sA2>sB2,且,則()A.這兩組數據的波動相同 B.數據B的波動小一些C.它們的平均水平不相同 D.數據A的波動小一些2.甲、乙兩人在筆直的湖邊公路上同起點、同終點、同方向勻速步行2400米,先到終點的人原地休息.已知甲先出發4分鐘,在整個步行過程中,甲、乙兩人的距離y(米)與甲出發的時間t(分)之間的關系如圖所示,下列結論:①甲步行的速度為60米/分;②乙走完全程用了32分鐘;③乙用16分鐘追上甲;④乙到達終點時,甲離終點還有300米其中正確的結論有()A.1個 B.2個 C.3個 D.4個3.如圖,數軸上的三點所表示的數分別為,其中,如果|那么該數軸的原點的位置應該在()A.點的左邊 B.點與點之間 C.點與點之間 D.點的右邊4.如圖,在菱形ABCD中,∠A=60°,E是AB邊上一動點(不與A、B重合),且∠EDF=∠A,則下列結論錯誤的是()A.AE=BF B.∠ADE=∠BEFC.△DEF是等邊三角形 D.△BEF是等腰三角形5.關于二次函數,下列說法正確的是()A.圖像與軸的交點坐標為 B.圖像的對稱軸在軸的右側C.當時,的值隨值的增大而減小 D.的最小值為-36.計算﹣的結果為()A. B. C. D.7.估計的值在()A.0到l之間 B.1到2之間 C.2到3之間 D.3到4之間8.如圖,點A、B、C在圓O上,若∠OBC=40°,則∠A的度數為()A.40° B.45° C.50° D.55°9.的絕對值是()A. B. C. D.10.用鋁片做聽裝飲料瓶,現有100張鋁片,每張鋁片可制瓶身16個或制瓶底45個,一個瓶身和兩個瓶底可配成一套,設用張鋁片制作瓶身,則可列方程()A. B.C. D.二、填空題(共7小題,每小題3分,滿分21分)11.若圓錐的母線長為4cm,其側面積,則圓錐底面半徑為cm.12.甲乙兩地9月上旬的日平均氣溫如圖所示,則甲乙兩地這10天日平均氣溫方差大小關系為________.(填“>”或“<”)13.如圖,從甲樓底部A處測得乙樓頂部C處的仰角是30°,從甲樓頂部B處測得乙樓底部D處的俯角是45°,已知甲樓的高AB是120m,則乙樓的高CD是_____m(結果保留根號)14.已知一元二次方程x2-4x-3=0的兩根為m,n,則-mn+=.15.比較大小:_____.(填“<“,“=“,“>“)16.如圖,小紅作出了邊長為1的第1個正△A1B1C1,算出了正△A1B1C1的面積,然后分別取△A1B1C1三邊的中點A2,B2,C2,作出了第2個正△A2B2C2,算出了正△A2B2C2的面積,用同樣的方法,作出了第3個正△A3B3C3,算出了正△A3B3C3的面積…,由此可得,第8個正△A8B8C8的面積是_____.17.在10個外觀相同的產品中,有2個不合格產品,現從中任意抽取1個進行檢測,抽到合格產品的概率是.三、解答題(共7小題,滿分69分)18.(10分)湯姆斯杯世界男子羽毛球團體賽小組賽比賽規則:兩隊之間進行五局比賽,其中三局單打,兩局雙打,五局比賽必須全部打完,贏得三局及以上的隊獲勝.假如甲,乙兩隊每局獲勝的機會相同.(1)若前四局雙方戰成2:2,那么甲隊最終獲勝的概率是__________;(2)現甲隊在前兩局比賽中已取得2:0的領先,那么甲隊最終獲勝的概率是多少?19.(5分)計算:(﹣)0﹣|﹣3|+(﹣1)2015+()﹣1.20.(8分)在平面直角坐標系中,關于的一次函數的圖象經過點,且平行于直線.(1)求該一次函數表達式;(2)若點Q(x,y)是該一次函數圖象上的點,且點Q在直線的下方,求x的取值范圍.21.(10分)如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,點O在AB上,以點O為圓心,OA為半徑的圓恰好經過點D,分別交AC、AB于點E.F.試判斷直線BC與⊙O的位置關系,并說明理由;若BD=23,BF=2,求⊙O的半徑.22.(10分)已知,在菱形ABCD中,∠ADC=60°,點H為CD上任意一點(不與C、D重合),過點H作CD的垂線,交BD于點E,連接AE.(1)如圖1,線段EH、CH、AE之間的數量關系是;(2)如圖2,將△DHE繞點D順時針旋轉,當點E、H、C在一條直線上時,求證:AE+EH=CH.23.(12分)先化簡再求值:÷(a﹣),其中a=2cos30°+1,b=tan45°.24.(14分)如圖,矩形ABCD中,E是AD的中點,延長CE,BA交于點F,連接AC,DF.求證:四邊形ACDF是平行四邊形;當CF平分∠BCD時,寫出BC與CD的數量關系,并說明理由.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解題分析】試題解析:方差越小,波動越小.數據B的波動小一些.故選B.點睛:本題考查方差的意義.方差是用來衡量一組數據波動大小的量,方差越大,表明這組數據偏離平均數越大,即波動越大,數據越不穩定;反之,方差越小,表明這組數據分布比較集中,各數據偏離平均數越小,即波動越小,數據越穩定.2、A【解題分析】【分析】根據題意和函數圖象中的數據可以判斷各個小題中的結論是否正確,從而可以解答本題.【題目詳解】由圖可得,甲步行的速度為:240÷4=60米/分,故①正確,乙走完全程用的時間為:2400÷(16×60÷12)=30(分鐘),故②錯誤,乙追上甲用的時間為:16﹣4=12(分鐘),故③錯誤,乙到達終點時,甲離終點距離是:2400﹣(4+30)×60=360米,故④錯誤,故選A.【題目點撥】本題考查了函數圖象,弄清題意,讀懂圖象,從中找到必要的信息是解題的關鍵.3、C【解題分析】

根據絕對值是數軸上表示數的點到原點的距離,分別判斷出點A、B、C到原點的距離的大小,從而得到原點的位置,即可得解.【題目詳解】∵|a|>|c|>|b|,

∴點A到原點的距離最大,點C其次,點B最小,

又∵AB=BC,

∴原點O的位置是在點B、C之間且靠近點B的地方.

故選:C.【題目點撥】此題考查了實數與數軸,理解絕對值的定義是解題的關鍵.4、D【解題分析】

連接BD,可得△ADE≌△BDF,然后可證得DE=DF,AE=BF,即可得△DEF是等邊三角形,然后可證得∠ADE=∠BEF.【題目詳解】連接BD,∵四邊形ABCD是菱形,

∴AD=AB,∠ADB=∠ADC,AB∥CD,

∵∠A=60°,

∴∠ADC=120°,∠ADB=60°,

同理:∠DBF=60°,

即∠A=∠DBF,

∴△ABD是等邊三角形,

∴AD=BD,

∵∠ADE+∠BDE=60°,∠BDE+∠BDF=∠EDF=60°,

∴∠ADE=∠BDF,

∵在△ADE和△BDF中,,

∴△ADE≌△BDF(ASA),

∴DE=DF,AE=BF,故A正確;

∵∠EDF=60°,

∴△EDF是等邊三角形,

∴C正確;

∴∠DEF=60°,

∴∠AED+∠BEF=120°,

∵∠AED+∠ADE=180°-∠A=120°,

∴∠ADE=∠BEF;

故B正確.

∵△ADE≌△BDF,

∴AE=BF,

同理:BE=CF,

但BE不一定等于BF.

故D錯誤.

故選D.【題目點撥】本題考查了菱形的性質、等邊三角形的判定與性質以及全等三角形的判定與性質,解題的關鍵是正確尋找全等三角形解決問題.5、D【解題分析】分析:根據題目中的函數解析式可以判斷各個選項中的結論是否成立,從而可以解答本題.詳解:∵y=2x2+4x-1=2(x+1)2-3,∴當x=0時,y=-1,故選項A錯誤,該函數的對稱軸是直線x=-1,故選項B錯誤,當x<-1時,y隨x的增大而減小,故選項C錯誤,當x=-1時,y取得最小值,此時y=-3,故選項D正確,故選D.點睛:本題考查二次函數的性質、二次函數的最值,解答本題的關鍵是明確題意,利用二次函數的性質解答.6、A【解題分析】

根據分式的運算法則即可【題目詳解】解:原式=,故選A.【題目點撥】本題主要考查分式的運算。7、B【解題分析】∵9<11<16,∴,∴故選B.8、C【解題分析】

根據等腰三角形的性質和三角形內角和定理求得∠BOC=100°,再利用圓周角定理得到∠A=12【題目詳解】∵OB=OC,

∴∠OBC=∠OCB.

又∠OBC=40°,

∴∠OBC=∠OCB=40°,

∴∠BOC=180°-2×40°=100°,

∴∠A=12【題目點撥】考查了圓周角定理.在同圓或等圓中,一條弧所對的圓周角是它所對的圓心角的一半.9、C【解題分析】

根據數軸上某個數與原點的距離叫做這個數的絕對值的定義即可解決.【題目詳解】在數軸上,點到原點的距離是,所以,的絕對值是,故選C.【題目點撥】錯因分析

容易題,失分原因:未掌握絕對值的概念.10、C【解題分析】

設用張鋁片制作瓶身,則用張鋁片制作瓶底,可作瓶身16x個,瓶底個,再根據一個瓶身和兩個瓶底可配成一套,即可列出方程.【題目詳解】設用張鋁片制作瓶身,則用張鋁片制作瓶底,依題意可列方程故選C.【題目點撥】此題主要考查一元一次方程的應用,解題的關鍵是根據題意找到等量關系.二、填空題(共7小題,每小題3分,滿分21分)11、3【解題分析】∵圓錐的母線長是5cm,側面積是15πcm2,∴圓錐的側面展開扇形的弧長為:l==6π,∵錐的側面展開扇形的弧長等于圓錐的底面周長,∴r==3cm,12、>【解題分析】

觀察平均氣溫統計圖可知:乙地的平均氣溫比較穩定,波動小;波動越小越穩定.【題目詳解】解:觀察平均氣溫統計圖可知:乙地的平均氣溫比較穩定,波動小;則乙地的日平均氣溫的方差小,故S2甲>S2乙.故答案為:>.【題目點撥】本題考查方差的意義.方差是用來衡量一組數據波動大小的量,方差越大,表明這組數據偏離平均數越大,即波動越大,數據越不穩定.反之,方差越小,表明這組數據分布比較集中,各數據偏離平均數越小,即波動越小,數據越穩定.13、40【解題分析】

利用等腰直角三角形的性質得出AB=AD,再利用銳角三角函數關系即可得出答案.【題目詳解】解:由題意可得:∠BDA=45°,則AB=AD=120m,又∵∠CAD=30°,∴在Rt△ADC中,tan∠CDA=tan30°=,解得:CD=40(m),故答案為40.【題目點撥】此題主要考查了解直角三角形的應用,正確得出tan∠CDA=tan30°=是解題關鍵.14、1【解題分析】試題分析:由m與n為已知方程的解,利用根與系數的關系求出m+n=4,mn=﹣3,將所求式子利用完全平方公式變形后,即﹣mn+=﹣3mn=16+9=1.故答案為1.考點:根與系數的關系.15、<【解題分析】

先比較它們的平方,進而可比較與的大小.【題目詳解】()2=80,()2=100,∵80<100,∴<.故答案為:<.【題目點撥】本題考查了實數的大小比較,帶二次根號的實數,在比較它們的大小時,通常先比較它們的平方的大小.16、【解題分析】

根據相似三角形的性質,先求出正△A2B2C2,正△A3B3C3的面積,依此類推△AnBnCn的面積是,從而求出第8個正△A8B8C8的面積.【題目詳解】正△A1B1C1的面積是,而△A2B2C2與△A1B1C1相似,并且相似比是1:2,則面積的比是,則正△A2B2C2的面積是×;因而正△A3B3C3與正△A2B2C2的面積的比也是,面積是×()2;依此類推△AnBnCn與△An-1Bn-1Cn-1的面積的比是,第n個三角形的面積是()n-1.所以第8個正△A8B8C8的面積是×()7=.故答案為.【題目點撥】本題考查了相似三角形的性質及應用,相似三角形面積的比等于相似比的平方,找出規律是關鍵.17、【解題分析】

試題分析:根據概率的意義,用符合條件的數量除以總數即可,即.考點:概率三、解答題(共7小題,滿分69分)18、(1)12;(2)【解題分析】分析:(1)直接利用概率公式求解;(2)畫樹狀圖展示所有8種等可能的結果數,再找出甲至少勝一局的結果數,然后根據概率公式求.詳解:(1)甲隊最終獲勝的概率是12(2)畫樹狀圖為:共有8種等可能的結果數,其中甲至少勝一局的結果數為7,所以甲隊最終獲勝的概率=78點睛:本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式計算事件A或事件B的概率.19、-1【解題分析】分析:根據零次冪、絕對值以及負指數次冪的計算法則求出各式的值,然后進行求和得出答案.詳解:解:(﹣)0﹣|﹣3|+(﹣1)2015+()﹣1=1﹣3+(﹣1)+2=﹣1.點睛:本題主要考查的是實數的計算法則,屬于基礎題型.理解各種計算法則是解決這個問題的關鍵.20、(1);(2).【解題分析】

(1)由題意可設該一次函數的解析式為:,將點M(4,7)代入所設解析式求出b的值即可得到一次函數的解析式;(2)根據直線上的點Q(x,y)在直線的下方可得2x-1<3x+2,解不等式即得結果.【題目詳解】解:(1)∵一次函數平行于直線,∴可設該一次函數的解析式為:,∵直線過點M(4,7),∴8+b=7,解得b=-1,∴一次函數的解析式為:y=2x-1;(2)∵點Q(x,y)是該一次函數圖象上的點,∴y=2x-1,又∵點Q在直線的下方,如圖,∴2x-1<3x+2,解得x>-3.【題目點撥】本題考查了待定系數法求一次函數的解析式以及一次函數與不等式的關系,屬于常考題型,熟練掌握待定系數法與一次函數與不等式的關系是解題的關鍵.21、(1)相切,理由見解析;(1)1.【解題分析】

(1)求出OD//AC,得到OD⊥BC,根據切線的判定得出即可;(1)根據勾股定理得出方程,求出方程的解即可.【題目詳解】(1)直線BC與⊙O的位置關系是相切,理由是:連接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠CAB,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODB=90°,即OD⊥BC,∵OD為半徑,∴直線BC與⊙O的位置關系是相切;(1)設⊙O的半徑為R,則OD=OF=R,在Rt△BDO中,由勾股定理得:OB2=BD2+OD2,即(R+1)2=(13)2+R2,解得:R=1,即⊙O的半徑是1.【題目點撥】此題考查切線的判定,勾股定理,解題關鍵在于求出OD⊥BC.22、(1)EH2+CH2=AE2;(2)見解析.【解題分析】分析:(1)如圖1,過E作EM⊥AD于M,由四邊形ABCD是菱形,得到AD=CD,∠ADE=∠CDE,通過△DME≌△DHE,根據全等三角形的性質得到EM=EH,DM=DH,等量代換得到AM=CH,根據勾股定理即可得到結論;

(2)如圖2,根據菱形的性質得到∠BDC=∠BDA=30°,DA=DC,在CH上截取HG,使HG=EH,推出△DEG是等邊三角形,由等邊三角形的性質得到∠EDG=60°,推出△DAE≌△DCG,根據全等三角形的性質即可得到結論.詳解:(1)EH2+CH2=AE2,如圖1,過E作EM⊥AD于M,∵四邊形ABCD是菱形,∴AD=CD,∠ADE=∠CDE,∵EH⊥CD,∴∠DME=∠DHE=90°,在△DME與△DHE中,,∴△DME≌△DHE,∴EM=EH,DM=DH,∴AM=CH,在Rt△AME中,AE2=AM2+EM2,∴AE2=EH2+CH2;故答案為:EH2+CH2=AE2;(2)如圖2,∵菱形ABCD,∠ADC=60°,∴∠BDC=∠BDA=30°,DA=DC,∵EH⊥CD,∴∠DEH=60°,在CH上截取HG,使HG=EH,∵DH⊥EG,∴ED=DG,又∵∠DEG=60°,∴△DEG是等邊三角形,∴∠EDG=60°,∵∠EDG=∠ADC=60°,∴∠EDG﹣∠ADG=∠ADC﹣∠ADG,∴∠ADE=∠CDG,在△DAE與△DCG中,,∴△DAE≌△DCG,∴AE=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論