




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
福建省漳州市2023-2024學年高一上數(shù)學期末教學質量檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.已知,則角所在的象限是A.第一象限 B.第二象限C.第三象限 D.第四象限2.若a,b都為正實數(shù)且,則的最大值是()A. B.C. D.3.已知六邊形是邊長為1的正六邊形,則的值為A. B.C. D.4.在中,“”是“”的()A.充要條件 B.充分非必要條件C必要非充分條件 D.既非充分又非必要條件5.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積為()A. B.C. D.6.已知圓方程為,過該圓內一點的最長弦和最短弦分別為AC和BD,則四邊形ABCD的面積是()A.4 B.C.6 D.7.已知角終邊經(jīng)過點,且,則的值是()A. B.C. D.8.已知為等差數(shù)列,為的前項和,且,,則公差A. B.C. D.9.若集合,,則A. B.C. D.10.若,則與在同一坐標系中的圖象大致是()A. B.C. D.11.如圖,在中,是的中點,若,則實數(shù)的值是A. B.1C. D.12.已知函數(shù),若,,,則,,的大小關系為A. B.C. D.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.點關于直線的對稱點的坐標為______.14.函數(shù)定義域為____.15.如圖1,正方形ABCD的邊長為2,點M為線段CD的中點.現(xiàn)把正方形紙按照圖2進行折疊,使點A與點M重合,折痕與AD交于點E,與BC交于點F.記,則_______.16.在空間直角坐標系中,點在平面上的射影為點,在平面上的射影為點,則__________三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.對于函數(shù),若,則稱為的“不動點”,若,則稱為的“穩(wěn)定點”,函數(shù)的“不動點”和“穩(wěn)定點”的集合分別記為和,即,,那么,(1)求函數(shù)的“穩(wěn)定點”;(2)求證:;(3)若,且,求實數(shù)的取值范圍.18.已知角終邊上有一點,且.(1)求的值,并求與的值;(2)化簡并求的值.19.已知函數(shù).(1)求的定義域;(2)若函數(shù),且對任意的,,恒成立,求實數(shù)a的取值范圍.20.已知函數(shù).(1)若為偶函數(shù),求實數(shù)m的值;(2)當時,若不等式對任意恒成立,求實數(shù)a的取值范圍;(3)當時,關于x的方程在區(qū)間上恰有兩個不同的實數(shù)解,求實數(shù)m的取值范圍.21.如圖,在矩形ABCD中,邊AB所在的直線方程的斜率為2,點C(2,0).求直線BC的方程22.已知函數(shù),,.(1)若,解關于方程;(2)設,函數(shù)在區(qū)間上的最大值為3,求的取值范圍;(3)當時,對任意,函數(shù)在區(qū)間上的最大值與最小值的差不大于1,求的取值范圍.
參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、A【解析】根據(jù)題意,由于,則說明正弦值和余弦值都是正數(shù),因此可知角所在的象限是第一象限,故選A.考點:三角函數(shù)的定義點評:主要是考查了三角函數(shù)的定義的運用,屬于基礎題2、D【解析】由基本不等式,結合題中條件,直接求解,即可得出結果.【詳解】因為,都為正實數(shù),,所以,當且僅當,即時,取最大值.故選:D3、D【解析】如圖,,選D.4、A【解析】結合三角形內角與充分、必要條件的知識確定正確選項.【詳解】在中,,所以,所以在中,“”是“”的充要條件.故選:A5、D【解析】借助正方體模型還原幾何體,進而求解表面積即可.【詳解】解:如圖,在邊長為的正方體模型中,將三視圖還原成直觀圖為三棱錐,其中,均為直角三角形,為等邊三角形,,所以該幾何體的表面積為故選:D6、C【解析】由圓的方程可知圓心為,半徑,則過圓內一點的最長弦為直徑,最短弦為該點與圓心連線的垂線段,進而求解即可【詳解】由題,圓心為,半徑,過圓內一點的最長弦為直徑,故;當時,弦長最短,因為,所以,因為在直徑上,所以,所以四邊形ABCD的面積是,故選:C【點睛】本題考查過圓內一點弦長的最值問題,考查兩點間距離公式的應用,考查數(shù)形結合思想7、A【解析】由終邊上的點及正切值求參數(shù)m,再根據(jù)正弦函數(shù)的定義求.【詳解】由題設,,可得,所以.故選:A8、A【解析】分析:先根據(jù)已知化簡即得公差d.詳解:由題得4+4+d+4+2d=6,所以d=.故答案為A.點睛:本題主要考查等差數(shù)列的前n項和和等差數(shù)列的通項,意在考查學生對這些基礎知識的掌握水平.9、C【解析】因為集合,,所以A∩B=x故選C.10、D【解析】根據(jù)指數(shù)函數(shù)與對數(shù)函數(shù)的圖象判斷【詳解】因為,,是減函數(shù),是增函數(shù),只有D滿足故選:D11、C【解析】以作為基底表示出,利用平面向量基本定理,即可求出【詳解】∵分別是的中點,∴.又,∴.故選C.【點睛】本題主要考查平面向量基本定理以及向量的線性運算,意在考查學生的邏輯推理能力12、C【解析】根據(jù)函數(shù)解析式先判斷函數(shù)的單調性和奇偶性,然后根據(jù)指數(shù)和對數(shù)的運算法則進行化簡即可【詳解】∵f(x)=x3,∴函數(shù)f(x)是奇函數(shù),且函數(shù)為增函數(shù),a=﹣f(log3)=﹣f(﹣log310)=f(log310),則2<log39.1<log310,20.9<2,即20.9<log39.1<log310,則f(209)<f(log39.1)<f(log310),即c<b<a,故選C【點睛】本題主要考查函數(shù)值的大小的比較,根據(jù)函數(shù)解析式判斷函數(shù)的單調性和奇偶性是解決本題的關鍵二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、【解析】設點關于直線的對稱點為,由垂直的斜率關系,和線段的中點在直線上列出方程組即可求解.【詳解】設點關于直線的對稱點為,由對稱性知,直線與線段垂直,所以,所以,又線段的中點在直線上,即,所以,由,所以點關于直線的對稱點的坐標為:.故答案為:.14、∪【解析】根據(jù)題意列出滿足的條件,解不等式組【詳解】由題意得,即,解得或,從而函數(shù)的定義域為∪.故答案為:∪.15、【解析】設,則,利用勾股定理求得,進而得出,根據(jù)正弦函數(shù)的定義求出,由誘導公式求出,結合同角的三角函數(shù)關系和兩角和的正弦公式計算即可.【詳解】設,則,在中,,所以,即,解得,所以,所以在中,,則,又,所以.故答案為:16、【解析】因為點在平面上的射影為點,在平面上的射影為點,所以由兩點間距離公式可得,故答案為.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1)“穩(wěn)定點”;(2)見解析;(3)【解析】本題拿出一個概念來作為新型定義題,只需要去對定義的理解就好,要求函數(shù)的“穩(wěn)定點”只需求方程中的值,即為“穩(wěn)定點”若,有這是不動點的定義,此時得出,,如果,則直接滿足.先求出即存在“不動點”的條件,同理取得到存在“穩(wěn)定點”的條件,而兩集合相等,即條件所求出的結果一直,對結果進行分類討論.【詳解】(1)由有,得:,所以函數(shù)的“穩(wěn)定點”為;(2)證明:若,則,顯然成立;若,設,有,則有,所以,故(3)因為,所以方程有實根,即有實根,所以或,解得又由得:即由(1)知,故方程左邊含有因式所以,又,所以方程要么無實根,要么根是方程的解,當方程無實根時,或,即,當方程有實根時,則方程的根是方程的解,則有,代入方程得,故,將代入方程,得,所以.綜上:的取值范圍是.【點睛】作為新型定義題,題中需要求什么,我們就從條件中去得到相應的關系,比如本題中,求不動點,就去求;求穩(wěn)定點,就去求,完全根據(jù)定義去處理問題.需要求出不動點及穩(wěn)定點相同,則需要它們對應方程的解完全一樣.18、(1),,(2)【解析】(1)直接利用三角函數(shù)的定義依次計算得到答案.(2)根據(jù)誘導公式化簡得到原式等于,計算得到答案.【小問1詳解】,,解得.故,.【小問2詳解】.19、(1).(2)(2,+∞).【解析】(1)使對數(shù)式有意義,即得定義域;(2)命題等價于,如其中一個不易求得,如不易求,則轉化為恒成立,再由其它方法如分離參數(shù)法求解或由二次不等式恒成立問題求解【詳解】(1)由題可知且,所以.所以的定義域為.(2)由題易知在其定義域上單調遞增.所以在上的最大值為,對任意恒成立等價于恒成立.由題得.令,則恒成立.當時,,不滿足題意.當時,,解得,因為,所以舍去.當時,對稱軸為,當,即時,,所以;當,即時,,無解,舍去;當,即時,,所以,舍去.綜上所述,實數(shù)a的取值范圍為(2,+∞).【點睛】本題考查求對數(shù)型復合函數(shù)的定義域,不等式恒成立問題.解題時注意轉化與化歸思想的應用.20、(1)-1;(2);(3)【解析】(1)根據(jù)偶函數(shù)解得:m=-1,再用定義法進行證明;(2)記,判斷出在上單增,列不等式組求出實數(shù)a的取值范圍;(3)先判斷出在R上單增且,令,把問題轉化為在上有兩根,令,,利用圖像有兩個交點,列不等式求出實數(shù)m的取值范圍.【小問1詳解】定義域為R.因為為偶函數(shù),所以,即,解得:m=-1.此時,所以所以偶函數(shù),所以m=-1.【小問2詳解】當時,不等式可化為:,即對任意恒成立.記,只需.因為在上單增,在上單增,所以在上單增,所以,所以,解得:,即實數(shù)a的取值范圍為.【小問3詳解】當時,在R上單增,在R上單增,所以在R上單增且.則可化為.又因為在R上單增,所以,換底得:,即.令,則,問題轉化為在上有兩根,即,令,,分別作出圖像如圖所示:只需,解得:.即實數(shù)m的取值范圍為.【點睛】已知函數(shù)有零點(方程有根)求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉化成求函數(shù)的值域問題加以解決;(3)數(shù)形結合法:先對解析式變形,進而構造兩個函數(shù),然后在同一平面直角坐標系中畫出函數(shù)的圖象,利用數(shù)形結合的方法求解21、x+2y﹣2=0【解析】由矩形可知相鄰兩邊垂直,可求出直線斜率,代入點,可求方程【詳解】∵四邊形ABCD為矩形,∴AB⊥BC,∴kAB?kBC=﹣1∴,∴直線BC的方程為,即x+2y﹣2=0【點睛】本題考查直線垂直,和點斜式直線方程,屬于基礎題22、(1);(2);(3).【解析】(1)將代入函數(shù)的解析式,并求出函數(shù)的定義域,利用對數(shù)的運算法則可解出方程;(2)當時,,分、和三種情況討論,去絕對值,分析函數(shù)在區(qū)間上的單調性,結合該函數(shù)在區(qū)間上的最大值為,可求出實數(shù)的取值范圍;(3)利用對數(shù)的運算性質可得出,可知該函數(shù)在區(qū)間上為減函數(shù),由題意得出對任意的恒成立,求出在上的最大值,即可得出實數(shù)的取值范圍.【詳解】(1)當時,,則,定義域為.由,可得,可得,解得或(舍去),因此,關于的方程的解為;(2)當時,.當時,對任意的恒成立,則,此時,函數(shù)在區(qū)間上為增函數(shù),,合乎題意;當時,對任意的恒成立,則,此時,函數(shù)在區(qū)間上為減函數(shù),,解得,不合乎題意;當時,令,得,此時,所以,函數(shù)在區(qū)間上為減函數(shù),在區(qū)間上為增函數(shù).,,由于,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T/CACEM 15.2-07-2020城市公共交通運營服務第7部分:評價與改進
- 藝術品市場數(shù)字化發(fā)展考核試卷
- 數(shù)據(jù)庫基礎知識試題及答案
- 管道工程綠色可持續(xù)發(fā)展模式考核試卷
- 信息系統(tǒng)監(jiān)理師考試核心知識點試題及答案
- 金屬工藝品的產(chǎn)業(yè)政策支持與挑戰(zhàn)應對考核試卷
- 軟件測試流程詳盡解析試題及答案
- 行政組織理論的角色與功能分析及2025年試題及答案
- 精煉2025年行政組織理論考試有效試題及答案
- 嵌入式系統(tǒng)中的實時操作試題及答案
- 2024年大型主題公園設計與施工合同
- 【MOOC】政府審計學-南京審計大學 中國大學慕課MOOC答案
- 污水處理廠安全生產(chǎn)培訓
- 婦科藥品管理
- 【MOOC】電路分析基礎-北京科技大學 中國大學慕課MOOC答案
- 《非織造產(chǎn)品課程設計》課程教學大綱
- 2024年第一季度醫(yī)療安全(不良)事件分析報告
- DB51-T 5048-2017 四川省地基與基礎施工工藝規(guī)程
- 高級廚師用工合同書模板
- 安寧療護舒適照護
- 磁芯材料磁性及損耗測試方法
評論
0/150
提交評論