




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江西省九江市彭澤縣重點達標名校2024屆中考數學最后沖刺模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列計算正確的是()A.(a2)3=a6 B.a2?a3=a6 C.a3+a4=a7 D.(ab)3=ab32.若直線y=kx+b圖象如圖所示,則直線y=?bx+k的圖象大致是()A. B. C. D.3.下列計算正確的是()A.2m+3n=5mnB.m2?m3=m6C.m8÷m6=m2D.(﹣m)3=m34.對于非零的兩個實數、,規定,若,則的值為()A. B. C. D.5.如圖所示,a∥b,直線a與直線b之間的距離是()A.線段PA的長度 B.線段PB的長度C.線段PC的長度 D.線段CD的長度6.如圖,已知BD與CE相交于點A,ED∥BC,AB=8,AC=12,AD=6,那么AE的長等于()A.4 B.9 C.12 D.167.如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,其頂點坐標為A(﹣1,﹣3),與x軸的一個交點為B(﹣3,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點,下列結論:①abc>0;②不等式ax2+(b﹣m)x+c﹣n<0的解集為﹣3<x<﹣1;③拋物線與x軸的另一個交點是(3,0);④方程ax2+bx+c+3=0有兩個相等的實數根;其中正確的是()A.①③ B.②③ C.③④ D.②④8.下列說法中,正確的是()A.兩個全等三角形,一定是軸對稱的B.兩個軸對稱的三角形,一定是全等的C.三角形的一條中線把三角形分成以中線為軸對稱的兩個圖形D.三角形的一條高把三角形分成以高線為軸對稱的兩個圖形9.如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公大樓頂端A測得旗桿頂端E的俯角α是45°,旗桿低端D到大樓前梯砍底邊的距離DC是20米,梯坎坡長BC是12米,梯坎坡度i=1:,則大樓AB的高度約為()(精確到0.1米,參考數據:)A.30.6米 B.32.1米 C.37.9米 D.39.4米10.如圖,在△ABC中,分別以點A和點C為圓心,大于AC長為半徑畫弧,兩弧相交于點M,N,作直線MN分別交BC,AC于點D,E,若AE=3cm,△ABD的周長為13cm,則△ABC的周長為()A.16cm B.19cm C.22cm D.25cm二、填空題(共7小題,每小題3分,滿分21分)11.將拋物線y=2x2平移,使頂點移動到點P(﹣3,1)的位置,那么平移后所得新拋物線的表達式是_____.12.王經理到襄陽出差帶回襄陽特產——孔明菜若干袋,分給朋友們品嘗.如果每人分5袋,還余3袋;如果每人分6袋,還差3袋,則王經理帶回孔明菜_________袋13.如圖,點A為函數y=(x>0)圖象上一點,連結OA,交函數y=(x>0)的圖象于點B,點C是x軸上一點,且AO=AC,則△OBC的面積為____.14.已知是整數,則正整數n的最小值為___15.如圖,直線l⊥x軸于點P,且與反比例函數y1=(x>0)及y2=(x>0)的圖象分別交于點A,B,連接OA,OB,已知△OAB的面積為2,則k1-k2=________.16.如圖,點A,B,C在⊙O上,∠OBC=18°,則∠A=_______________________.17.如圖,Rt△ABC的直角邊BC在x軸上,直線y=x﹣經過直角頂點B,且平分△ABC的面積,BC=3,點A在反比例函數y=圖象上,則k=_______.三、解答題(共7小題,滿分69分)18.(10分)已知:關于x的一元二次方程kx2﹣(4k+1)x+3k+3=0(k是整數).(1)求證:方程有兩個不相等的實數根;(2)若方程的兩個實數根都是整數,求k的值.19.(5分)為了提高服務質量,某賓館決定對甲、乙兩種套房進行星級提升,已知甲種套房提升費用比乙種套房提升費用少3萬元,如果提升相同數量的套房,甲種套房費用為625萬元,乙種套房費用為700萬元.(1)甲、乙兩種套房每套提升費用各多少萬元?(2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬元,但不超過2096萬元,且所籌資金全部用于甲、乙種套房星級提升,市政府對兩種套房的提升有幾種方案?哪一種方案的提升費用最少?(3)在(2)的條件下,根據市場調查,每套乙種套房的提升費用不會改變,每套甲種套房提升費用將會提高a萬元(a>0),市政府如何確定方案才能使費用最少?20.(8分)如圖1,反比例函數(x>0)的圖象經過點A(,1),射線AB與反比例函數圖象交于另一點B(1,a),射線AC與y軸交于點C,∠BAC=75°,AD⊥y軸,垂足為D.(1)求k的值;(2)求tan∠DAC的值及直線AC的解析式;(3)如圖2,M是線段AC上方反比例函數圖象上一動點,過M作直線l⊥x軸,與AC相交于點N,連接CM,求△CMN面積的最大值.21.(10分)由我國完全自主設計、自主建造的首艘國產航母于2018年5月成功完成第一次海上試驗任務.如圖,航母由西向東航行,到達處時,測得小島位于它的北偏東方向,且與航母相距80海里,再航行一段時間后到達B處,測得小島位于它的北偏東方向.如果航母繼續航行至小島的正南方向的處,求還需航行的距離的長.22.(10分)如圖,△ABC和△ADE分別是以BC,DE為底邊且頂角相等的等腰三角形,點D在線段BC上,AF平分DE交BC于點F,連接BE,EF.CD與BE相等?若相等,請證明;若不相等,請說明理由;若∠BAC=90°,求證:BF1+CD1=FD1.23.(12分)化簡:24.(14分)解方程組:
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解題分析】分析:根據冪的乘方、同底數冪的乘法、積的乘方公式即可得出答案.詳解:A、冪的乘方法則,底數不變,指數相乘,原式計算正確;B、同底數冪的乘法,底數不變,指數相加,原式=,故錯誤;C、不是同類項,無法進行加法計算;D、積的乘方等于乘方的積,原式=,計算錯誤;故選A.點睛:本題主要考查的是冪的乘方、同底數冪的乘法、積的乘方計算法則,屬于基礎題型.理解各種計算法則是解題的關鍵.2、A【解題分析】
根據一次函數y=kx+b的圖象可知k>1,b<1,再根據k,b的取值范圍確定一次函數y=?bx+k圖象在坐標平面內的位置關系,即可判斷.【題目詳解】解:∵一次函數y=kx+b的圖象可知k>1,b<1,
∴-b>1,∴一次函數y=?bx+k的圖象過一、二、三象限,與y軸的正半軸相交,故選:A.【題目點撥】本題考查了一次函數的圖象與系數的關系.函數值y隨x的增大而減小?k<1;函數值y隨x的增大而增大?k>1;一次函數y=kx+b圖象與y軸的正半軸相交?b>1,一次函數y=kx+b圖象與y軸的負半軸相交?b<1,一次函數y=kx+b圖象過原點?b=1.3、C【解題分析】
根據同底數冪的除法,底數不變指數相減;合并同類項,系數相加字母和字母的指數不變;同底數冪的乘法,底數不變指數相加;冪的乘方,底數不變指數相乘,對各選項計算后利用排除法求解.【題目詳解】解:A、2m與3n不是同類項,不能合并,故錯誤;B、m2?m3=m5,故錯誤;C、正確;D、(-m)3=-m3,故錯誤;故選:C.【題目點撥】本題考查同底數冪的除法,合并同類項,同底數冪的乘法,冪的乘方很容易混淆,一定要記準法則才能做題.4、D【解題分析】試題分析:因為規定,所以,所以x=,經檢驗x=是分式方程的解,故選D.考點:1.新運算;2.分式方程.5、A【解題分析】分析:從一條平行線上的任意一點到另一條直線作垂線,垂線段的長度叫兩條平行線之間的距離,由此可得出答案.詳解:∵a∥b,AP⊥BC∴兩平行直線a、b之間的距離是AP的長度∴根據平行線間的距離相等∴直線a與直線b之間的距離AP的長度故選A.點睛:本題考查了平行線之間的距離,屬于基礎題,關鍵是掌握平行線之間距離的定義.6、B【解題分析】
由于ED∥BC,可證得△ABC∽△ADE,根據相似三角形所得比例線段,即可求得AE的長.【題目詳解】∵ED∥BC,∴△ABC∽△ADE,∴=,∴==,即AE=9;∴AE=9.故答案選B.【題目點撥】本題考查的知識點是相似三角形的判定與性質,解題的關鍵是熟練的掌握相似三角形的判定與性質.7、D【解題分析】
①錯誤.由題意a>1.b>1,c<1,abc<1;
②正確.因為y1=ax2+bx+c(a≠1)圖象與直線y2=mx+n(m≠1)交于A,B兩點,當ax2+bx+c<mx+n時,-3<x<-1;即不等式ax2+(b-m)x+c-n<1的解集為-3<x<-1;故②正確;
③錯誤.拋物線與x軸的另一個交點是(1,1);
④正確.拋物線y1=ax2+bx+c(a≠1)圖象與直線y=-3只有一個交點,方程ax2+bx+c+3=1有兩個相等的實數根,故④正確.【題目詳解】解:∵拋物線開口向上,∴a>1,
∵拋物線交y軸于負半軸,∴c<1,
∵對稱軸在y軸左邊,∴-<1,
∴b>1,
∴abc<1,故①錯誤.
∵y1=ax2+bx+c(a≠1)圖象與直線y2=mx+n(m≠1)交于A,B兩點,
當ax2+bx+c<mx+n時,-3<x<-1;
即不等式ax2+(b-m)x+c-n<1的解集為-3<x<-1;故②正確,
拋物線與x軸的另一個交點是(1,1),故③錯誤,
∵拋物線y1=ax2+bx+c(a≠1)圖象與直線y=-3只有一個交點,
∴方程ax2+bx+c+3=1有兩個相等的實數根,故④正確.
故選:D.【題目點撥】本題考查二次函數的性質、二次函數與不等式,二次函數與一元二次方程等知識,解題的關鍵是靈活運用所學知識解決問題,學會利用數形結合的思想解決問題.8、B【解題分析】根據軸對稱圖形的概念對各選項分析判斷即可得解.解:A.兩個全等三角形,一定是軸對稱的錯誤,三角形全等位置上不一定關于某一直線對稱,故本選項錯誤;B.兩個軸對稱的三角形,一定全等,正確;C.三角形的一條中線把三角形分成以中線為軸對稱的兩個圖形,錯誤;D.三角形的一條高把三角形分成以高線為軸對稱的兩個圖形,錯誤.故選B.9、D【解題分析】解:延長AB交DC于H,作EG⊥AB于G,如圖所示,則GH=DE=15米,EG=DH,∵梯坎坡度i=1:,∴BH:CH=1:,設BH=x米,則CH=x米,在Rt△BCH中,BC=12米,由勾股定理得:,解得:x=6,∴BH=6米,CH=米,∴BG=GH﹣BH=15﹣6=9(米),EG=DH=CH+CD=+20(米),∵∠α=45°,∴∠EAG=90°﹣45°=45°,∴△AEG是等腰直角三角形,∴AG=EG=+20(米),∴AB=AG+BG=+20+9≈39.4(米).故選D.10、B【解題分析】
根據作法可知MN是AC的垂直平分線,利用垂直平分線的性質進行求解即可得答案.【題目詳解】解:根據作法可知MN是AC的垂直平分線,∴DE垂直平分線段AC,∴DA=DC,AE=EC=6cm,∵AB+AD+BD=13cm,∴AB+BD+DC=13cm,∴△ABC的周長=AB+BD+BC+AC=13+6=19cm,故選B.【題目點撥】本題考查作圖-基本作圖,線段的垂直平分線的性質等知識,解題的關鍵是熟練掌握線段的垂直平分線的性質.二、填空題(共7小題,每小題3分,滿分21分)11、y=2(x+3)2+1【解題分析】
由于拋物線平移前后二次項系數不變,然后根據頂點式寫出新拋物線解析式.【題目詳解】拋物線y=2x2平移,使頂點移到點P(﹣3,1)的位置,所得新拋物線的表達式為y=2(x+3)2+1.故答案為:y=2(x+3)2+1【題目點撥】本題考查了二次函數圖象與幾何變換:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通常可利用兩種方法:一是求出原拋物線上任意兩點平移后的坐標,利用待定系數法求出解析式;二是只考慮平移后的頂點坐標,即可求出解析式.12、33.【解題分析】試題分析:設品嘗孔明菜的朋友有x人,依題意得,5x+3=6x-3,解得x=6,所以孔明菜有5x+3=33袋.考點:一元一次方程的應用.13、6【解題分析】
根據題意可以分別設出點A、點B的坐標,根據點O、A、B在同一條直線上可以得到A、B的坐標之間的關系,由AO=AC可知點C的橫坐標是點A的橫坐標的2倍,從而可以得到△OBC的面積.【題目詳解】設點A的坐標為(a,),點B的坐標為(b,),∵點C是x軸上一點,且AO=AC,∴點C的坐標是(2a,0),設過點O(0,0),A(a,)的直線的解析式為:y=kx,∴=k?a,解得k=,又∵點B(b,)在y=x上,∴=?b,解得,=或=?(舍去),∴S△OBC==6.故答案為:6.【題目點撥】本題考查了等腰三角形的性質與反比例函數的圖象以及三角形的面積公式,解題的關鍵是熟練的掌握等腰三角形的性質與反比例函數的圖象以及三角形的面積公式.14、1【解題分析】
因為是整數,且,則1n是完全平方數,滿足條件的最小正整數n為1.【題目詳解】∵,且是整數,
∴是整數,即1n是完全平方數;
∴n的最小正整數值為1.
故答案為:1.【題目點撥】主要考查了二次根式的定義,關鍵是根據乘除法法則和二次根式有意義的條件.二次根式有意義的條件是被開方數是非負數進行解答.15、2【解題分析】
試題分析:∵反比例函數(x>1)及(x>1)的圖象均在第一象限內,∴>1,>1.∵AP⊥x軸,∴S△OAP=,S△OBP=,∴S△OAB=S△OAP﹣S△OBP==2,解得:=2.故答案為2.16、72°.【解題分析】
解:∵OB=OC,∠OBC=18°,∴∠BCO=∠OBC=18°,∴∠BOC=180°﹣2∠OBC=180°﹣2×18°=144°,∴∠A=∠BOC=×144°=72°.故答案為72°.【題目點撥】本題考查圓周角定理,掌握同弧所對的圓周角是圓心角的一半是本題的解題關鍵.17、1【解題分析】分析:根據題意得出點B的坐標,根據面積平分得出點D的坐標,利用三角形相似可得點A的坐標,從而求出k的值.詳解:根據一次函數可得:點B的坐標為(1,0),∵BD平分△ABC的面積,BC=3∴點D的橫坐標1.5,∴點D的坐標為,∵DE:AB=1:1,∴點A的坐標為(1,1),∴k=1×1=1.點睛:本題主要考查的是反比例函數的性質以及三角形相似的應用,屬于中等難度的題型.得出點D的坐標是解決這個問題的關鍵.三、解答題(共7小題,滿分69分)18、(3)證明見解析(3)3或﹣3【解題分析】
(3)根據一元二次方程的定義得k≠2,再計算判別式得到△=(3k-3)3,然后根據非負數的性質,即k的取值得到△>2,則可根據判別式的意義得到結論;(3)根據求根公式求出方程的根,方程的兩個實數根都是整數,求出k的值.【題目詳解】證明:(3)△=[﹣(4k+3)]3﹣4k(3k+3)=(3k﹣3)3.∵k為整數,∴(3k﹣3)3>2,即△>2.∴方程有兩個不相等的實數根.(3)解:∵方程kx3﹣(4k+3)x+3k+3=2為一元二次方程,∴k≠2.∵kx3﹣(4k+3)x+3k+3=2,即[kx﹣(k+3)](x﹣3)=2,∴x3=3,.∵方程的兩個實數根都是整數,且k為整數,∴k=3或﹣3.【題目點撥】本題主要考查了根的判別式的知識,熟知一元二次方程的根與△的關系是解答此題的關鍵.19、(1)甲:25萬元;乙:28萬元;(2)三種方案;甲種套房提升50套,乙種套房提升30套費用最少;(3)當a=3時,三種方案的費用一樣,都是2240萬元;當a>3時,取m=48時費用最省;當0<a<3時,取m=50時費用最省.【解題分析】試題分析:(1)設甲種套房每套提升費用為x萬元,根據題意建立方程求出其解即可;(2)設甲種套房提升m套,那么乙種套房提升(80-m)套,根據條件建立不等式組求出其解就可以求出提升方案,再表示出總費用與m之間的函數關系式,根據一次函數的性質就可以求出結論;(3)根據(2)表示出W與m之間的關系式,由一次函數的性質分類討論就可以得出結論.(1)設甲種套房每套提升費用為x萬元,依題意,得625解得:x=25經檢驗:x=25符合題意,x+3=28;答:甲,乙兩種套房每套提升費用分別為25萬元,28萬元.(2)設甲種套房提升套,那么乙種套房提升(m-48)套,依題意,得解得:48≤m≤50即m=48或49或50,所以有三種方案分別是:方案一:甲種套房提升48套,乙種套房提升32套.方案二:甲種套房提升49套,乙種套房提升1.套方案三:甲種套房提升50套,乙種套房提升30套.設提升兩種套房所需要的費用為W.所以當時,費用最少,即第三種方案費用最少.(3)在(2)的基礎上有:當a=3時,三種方案的費用一樣,都是2240萬元.當a>3時,取m=48時費用W最省.當0<a<3時,取m=50時費用最省.考點:1.一次函數的應用;2.分式方程的應用;3.一元一次不等式組的應用.20、(1);(2),;(3)【解題分析】試題分析:(1)根據反比例函數圖象上點的坐標特征易得k=2;(2)作BH⊥AD于H,如圖1,根據反比例函數圖象上點的坐標特征確定B點坐標為(1,2),則AH=2﹣1,BH=2﹣1,可判斷△ABH為等腰直角三角形,所以∠BAH=45°,得到∠DAC=∠BAC﹣∠BAH=30°,根據特殊角的三角函數值得tan∠DAC=;由于AD⊥y軸,則OD=1,AD=2,然后在Rt△OAD中利用正切的定義可計算出CD=2,易得C點坐標為(0,﹣1),于是可根據待定系數法求出直線AC的解析式為y=x﹣1;(3)利用M點在反比例函數圖象上,可設M點坐標為(t,)(0<t<2),由于直線l⊥x軸,與AC相交于點N,得到N點的橫坐標為t,利用一次函數圖象上點的坐標特征得到N點坐標為(t,t﹣1),則MN=﹣t+1,根據三角形面積公式得到S△CMN=?t?(﹣t+1),再進行配方得到S=﹣(t﹣)2+(0<t<2),最后根據二次函數的最值問題求解.試題解析:(1)把A(2,1)代入y=,得k=2×1=2;(2)作BH⊥AD于H,如圖1,把B(1,a)代入反比例函數解析式y=,得a=2,∴B點坐標為(1,2),∴AH=2﹣1,BH=2﹣1,∴△ABH為等腰直角三角形,∴∠BAH=45°,∵∠BAC=75°,∴∠DAC=∠BAC﹣∠BAH=30°,∴tan∠DAC=tan30°=;∵AD⊥y軸,∴OD=1,AD=2,∵tan∠DAC==,∴CD=2,∴OC=1,∴C點坐標為(0,﹣1),設直線AC的解析式為y=kx+b,把A(2,1)、C(0,﹣1)代入得,解得,∴直線AC的解析式為y=x﹣1;(3)設M點坐標為(t,)(0<t<2),∵直線l⊥x軸,與AC相交于點N,∴N點的橫坐標為t,∴N點坐標為(t,t﹣1),∴MN=﹣(t﹣1)=﹣t+1,∴S△CMN=?t?(﹣t+1)=﹣t2+t+=﹣(t﹣)2+(0<t<2),∵a=﹣<0,∴當t=時,S有最大值,最大值為.21、還需要航行的距離的長為20.4海里.【解題分析】分析:根據題意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,由三角函數得出CD=27.2海里,在直角三角形BCD中,得出BD,即可得出答案.詳解:由題知:,,.在中,,,(海里).在中,,,(海里).答:還需要航行的距離的長為20.4海里.點睛:此題考查了解直角三角形的應用-方向角問題,三角函數的應用;求出CD的長度是解決問題的關鍵.22、(1)CD=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025秋五年級語文上冊統編版-【19 父愛之舟】交互課件
- 能否代位解除合同協議書
- 醫美市場計劃方案
- 商業策劃方案范文6
- 公司業務拓展策劃方案策劃方案
- 天氣主題英語說課課件
- 汽車合同協議書綠本
- 社區讀書活動方案5
- 成都廚衛產品項目商業計劃書模板
- 衡水智能家居設備項目商業計劃書
- 地方低空經濟平臺建設指南白皮書
- 心血管-腎臟-代謝綜合征患者的綜合管理中國專家共識2025解讀
- 婚慶合作入股協議書
- 學院“十五五”大學文化建設規劃
- 2025年陜西省西安市西咸新區中考二模語文試題(原卷版+解析版)
- 安全生產管理和培訓制度
- 2025山東濟南先行投資集團有限責任公司及權屬公司社會招聘169人筆試參考題庫附帶答案詳解
- 2024年高考化學試卷(山東)(解析卷)
- 2025新款上海勞動合同樣本
- 2025中國工商銀行總行本部秋季校園招聘100人易考易錯模擬試題(共500題)試卷后附參考答案
- 《濾泡狀甲狀腺癌》教學課件
評論
0/150
提交評論