




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省深圳市海韻中學2024屆中考數學模擬預測題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.用半徑為8的半圓圍成一個圓錐的側面,則圓錐的底面半徑等于()A.4 B.6 C.16π D.82.如圖是一個放置在水平桌面的錐形瓶,它的俯視圖是()A. B. C. D.3.4的平方根是()A.2 B.±2 C.8 D.±84.在△ABC中,AD和BE是高,∠ABE=45°,點F是AB的中點,AD與FE,BE分別交于點G、H.∠CBE=∠BAD,有下列結論:①FD=FE;②AH=2CD;③BC?AD=AE2;④S△BEC=S△ADF.其中正確的有()A.1個 B.2個 C.3個 D.4個5.如圖,Rt△ABC中,∠C=90°,AC=4,BC=4,兩等圓⊙A,⊙B外切,那么圖中兩個扇形(即陰影部分)的面積之和為()A.2π B.4π C.6π D.8π6.如圖,矩形OABC有兩邊在坐標軸上,點D、E分別為AB、BC的中點,反比例函數y=(x<0)的圖象經過點D、E.若△BDE的面積為1,則k的值是()A.﹣8 B.﹣4 C.4 D.87.如果,那么代數式的值是()A.6 B.2 C.-2 D.-68.周末小麗從家里出發騎單車去公園,因為她家與公園之間是一條筆直的自行車道,所以小麗騎得特別放松.途中,她在路邊的便利店挑選一瓶礦泉水,耽誤了一段時間后繼續騎行,愉快地到了公園.圖中描述了小麗路上的情景,下列說法中錯誤的是()A.小麗從家到達公園共用時間20分鐘 B.公園離小麗家的距離為2000米C.小麗在便利店時間為15分鐘 D.便利店離小麗家的距離為1000米9.利用運算律簡便計算52×(–999)+49×(–999)+999正確的是A.–999×(52+49)=–999×101=–100899B.–999×(52+49–1)=–999×100=–99900C.–999×(52+49+1)=–999×102=–101898D.–999×(52+49–99)=–999×2=–199810.如圖,矩形ABCD中,AB=3,AD=,將矩形ABCD繞點B按順時針方向旋轉后得到矩形EBGF,此時恰好四邊形AEHB為菱形,連接CH交FG于點M,則HM=()A. B.1 C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,四邊形OABC中,AB∥OC,邊OA在x軸的正半軸上,OC在y軸的正半軸上,點B在第一象限內,點D為AB的中點,CD與OB相交于點E,若△BDE、△OCE的面積分別為1和9,反比例函數y=的圖象經過點B,則k=_______.12.如圖,已知反比例函數y=(k為常數,k≠0)的圖象經過點A,過A點作AB⊥x軸,垂足為B,若△AOB的面積為1,則k=________________.13.一個不透明的袋子中裝有5個球,其中3個紅球、2個黑球,這些球除顏色外無其它差別,現從袋子中隨機摸出一個球,則它是黑球的概率是_____.14.若關于x的函數與x軸僅有一個公共點,則實數k的值為.15.已知關于X的一元二次方程有實數根,則m的取值范圍是____________________16.當a<0,b>0時.化簡:=_____.三、解答題(共8題,共72分)17.(8分)先化簡,再求值:,其中,.18.(8分)如圖,矩形ABCD中,AB=4,BC=6,E是BC邊的中點,點P在線段AD上,過P作PF⊥AE于F,設PA=x.(1)求證:△PFA∽△ABE;(2)當點P在線段AD上運動時,設PA=x,是否存在實數x,使得以點P,F,E為頂點的三角形也與△ABE相似?若存在,請求出x的值;若不存在,請說明理由;(3)探究:當以D為圓心,DP為半徑的⊙D與線段AE只有一個公共點時,請直接寫出x滿足的條件:.19.(8分)計算:4cos30°﹣+20180+|1﹣|20.(8分)已知拋物線的開口向上頂點為P(1)若P點坐標為(4,一1),求拋物線的解析式;(2)若此拋物線經過(4,一1),當-1≤x≤2時,求y的取值范圍(用含a的代數式表示)(3)若a=1,且當0≤x≤1時,拋物線上的點到x軸距離的最大值為6,求b的值21.(8分)如圖,拋物線交X軸于A、B兩點,交Y軸于點C,.(1)求拋物線的解析式;(2)平面內是否存在一點P,使以A,B,C,P為頂點的四邊形為平行四邊形,若存在直接寫出P的坐標,若不存在請說明理由。22.(10分)如圖,⊙O中,AB是⊙O的直徑,G為弦AE的中點,連接OG并延長交⊙O于點D,連接BD交AE于點F,延長AE至點C,使得FC=BC,連接BC.(1)求證:BC是⊙O的切線;(2)⊙O的半徑為5,tanA=,求FD的長.23.(12分)如圖,矩形ABCD中,AB=4,AD=5,E為BC上一點,BE∶CE=3∶2,連接AE,點P從點A出發,沿射線AB的方向以每秒1個單位長度的速度勻速運動,過點P作PF∥BC交直線AE于點F.(1)線段AE=______;(2)設點P的運動時間為t(s),EF的長度為y,求y關于t的函數關系式,并寫出t的取值范圍;(3)當t為何值時,以F為圓心的⊙F恰好與直線AB、BC都相切?并求此時⊙F的半徑.24.《楊輝算法》中有這么一道題:“直田積八百六十四步,只云長闊共六十步,問長多幾何?”意思是:一塊矩形田地的面積為864平方步,只知道它的長與寬共60步,問它的長比寬多了多少步?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解題分析】
由于半圓的弧長=圓錐的底面周長,那么圓錐的底面周長為8π,底面半徑=8π÷2π.【題目詳解】解:由題意知:底面周長=8π,∴底面半徑=8π÷2π=1.故選A.【題目點撥】此題主要考查了圓錐側面展開扇形與底面圓之間的關系,圓錐的側面展開圖是一個扇形,此扇形的弧長等于圓錐底面周長,扇形的半徑等于圓錐的母線長,解決本題的關鍵是應用半圓的弧長=圓錐的底面周長.2、B【解題分析】
根據俯視圖是從上面看到的圖形解答即可.【題目詳解】錐形瓶從上面往下看看到的是兩個同心圓.故選B.【題目點撥】本題考查三視圖的知識,解決此類圖的關鍵是由三視圖得到相應的平面圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實線,被遮擋的線畫虛線.3、B【解題分析】
依據平方根的定義求解即可.【題目詳解】∵(±1)1=4,∴4的平方根是±1.故選B.【題目點撥】本題主要考查的是平方根的定義,掌握平方根的定義是解題的關鍵.4、C【解題分析】
根據題意和圖形,可以判斷各小題中的結論是否成立,從而可以解答本題.【題目詳解】∵在△ABC中,AD和BE是高,∴∠ADB=∠AEB=∠CEB=90°,∵點F是AB的中點,∴FD=AB,FE=AB,∴FD=FE,①正確;∵∠CBE=∠BAD,∠CBE+∠C=90°,∠BAD+∠ABC=90°,∴∠ABC=∠C,∴AB=AC,∵AD⊥BC,∴BC=2CD,∠BAD=∠CAD=∠CBE,在△AEH和△BEC中,,∴△AEH≌△BEC(ASA),∴AH=BC=2CD,②正確;∵∠BAD=∠CBE,∠ADB=∠CEB,∴△ABD∽△BCE,∴,即BC?AD=AB?BE,∵∠AEB=90°,AE=BE,∴AB=BEBC?AD=BE?BE,∴BC?AD=AE2;③正確;設AE=a,則AB=a,∴CE=a﹣a,∴=,即,∵AF=AB,∴,∴S△BEC≠S△ADF,故④錯誤,故選:C.【題目點撥】本題考查相似三角形的判定與性質、全等三角形的判定與性質、直角三角形斜邊上的中線,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答.5、B【解題分析】
先依據勾股定理求得AB的長,從而可求得兩圓的半徑為4,然后由∠A+∠B=90°可知陰影部分的面積等于一個圓的面積的.【題目詳解】在△ABC中,依據勾股定理可知AB==8,∵兩等圓⊙A,⊙B外切,∴兩圓的半徑均為4,∵∠A+∠B=90°,∴陰影部分的面積==4π.故選:B.【題目點撥】本題主要考查的是相切兩圓的性質、勾股定理的應用、扇形面積的計算,求得兩個扇形的半徑和圓心角之和是解題的關鍵.6、B【解題分析】
根據反比例函數的圖象和性質結合矩形和三角形面積解答.【題目詳解】解:作,連接.∵四邊形AHEB,四邊形ECOH都是矩形,BE=EC,∴故選B.【題目點撥】此題重點考查學生對反比例函數圖象和性質的理解,熟練掌握反比例函數圖象和性質是解題的關鍵.7、A【解題分析】【分析】將所求代數式先利用單項式乘多項式法則、平方差公式進行展開,然后合并同類項,最后利用整體代入思想進行求值即可.【題目詳解】∵3a2+5a-1=0,∴3a2+5a=1,∴5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,故選A.【題目點撥】本題考查了代數式求值,涉及到單項式乘多項式、平方差公式、合并同類項等,利用整體代入思想進行解題是關鍵.8、C【解題分析】解:A.小麗從家到達公園共用時間20分鐘,正確;B.公園離小麗家的距離為2000米,正確;C.小麗在便利店時間為15﹣10=5分鐘,錯誤;D.便利店離小麗家的距離為1000米,正確.故選C.9、B【解題分析】
根據乘法分配律和有理數的混合運算法則可以解答本題.【題目詳解】原式=-999×(52+49-1)=-999×100=-1.故選B.【題目點撥】本題考查了有理數的混合運算,解答本題的關鍵是明確有理數混合運算的計算方法.10、D【解題分析】
由旋轉的性質得到AB=BE,根據菱形的性質得到AE=AB,推出△ABE是等邊三角形,得到AB=3,AD=,根據三角函數的定義得到∠BAC=30°,求得AC⊥BE,推出C在對角線AH上,得到A,C,H共線,于是得到結論.【題目詳解】如圖,連接AC交BE于點O,∵將矩形ABCD繞點B按順時針方向旋轉后得到矩形EBGF,∴AB=BE,∵四邊形AEHB為菱形,∴AE=AB,∴AB=AE=BE,∴△ABE是等邊三角形,∵AB=3,AD=,∴tan∠CAB=,∴∠BAC=30°,∴AC⊥BE,∴C在對角線AH上,∴A,C,H共線,∴AO=OH=AB=,∵OC=BC=,∵∠COB=∠OBG=∠G=90°,∴四邊形OBGM是矩形,∴OM=BG=BC=,∴HM=OH﹣OM=,故選D.【題目點撥】本題考查了旋轉的性質,菱形的性質,等邊三角形的判定與性質,解直角三角形的應用等,熟練掌握和靈活運用相關的知識是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、16【解題分析】
根據題意得S△BDE:S△OCE=1:9,故BD:OC=1:3,設D(a,b)則A(a,0),B(a,2b),得C(0,3b),由S△OCE=9得ab=8,故可得解.【題目詳解】解:設D(a,b)則A(a,0),B(a,2b)∵S△BDE:S△OCE=1:9∴BD:OC=1:3∴C(0,3b)∴△COE高是OA的,∴S△OCE=3ba×=9解得ab=8k=a×2b=2ab=2×8=16故答案為16.【題目點撥】此題利用了:①過某個點,這個點的坐標應適合這個函數解析式;②所給的面積應整理為和反比例函數上的點的坐標有關的形式.12、-1【解題分析】試題解析:設點A的坐標為(m,n),因為點A在y=的圖象上,所以,有mn=k,△ABO的面積為=1,∴=1,∴=1,∴k=±1,由函數圖象位于第二、四象限知k<0,∴k=-1.考點:反比例外函數k的幾何意義.13、【解題分析】
用黑球的個數除以總球的個數即可得出黑球的概率.【題目詳解】解:∵袋子中共有5個球,有2個黑球,∴從袋子中隨機摸出一個球,它是黑球的概率為;故答案為.【題目點撥】本題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=.14、0或-1。【解題分析】由于沒有交待是二次函數,故應分兩種情況:當k=0時,函數是一次函數,與x軸僅有一個公共點。當k≠0時,函數是二次函數,若函數與x軸僅有一個公共點,則有兩個相等的實數根,即。綜上所述,若關于x的函數與x軸僅有一個公共點,則實數k的值為0或-1。15、m≤3且m≠2【解題分析】試題解析:∵一元二次方程有實數根∴4-4(m-2)≥0且m-2≠0解得:m≤3且m≠2.16、【解題分析】分析:按照二次根式的相關運算法則和性質進行計算即可.詳解:∵,∴.故答案為:.點睛:熟記二次根式的以下性質是解答本題的關鍵:(1);(2)=.三、解答題(共8題,共72分)17、9【解題分析】
根據完全平方公式、平方差公式、單項式乘多項式可以化簡題目中的式子,然后將x、y的值代入化簡后的式子即可解答本題.【題目詳解】當,時,原式【題目點撥】本題考查整式的化簡求值,解答本題的關鍵是明確整式化簡求值的方法.18、(1)證明見解析;(2)3或.(3)或0<【解題分析】
(1)根據矩形的性質,結合已知條件可以證明兩個角對應相等,從而證明三角形相似;
(2)由于對應關系不確定,所以應針對不同的對應關系分情況考慮:當時,則得到四邊形為矩形,從而求得的值;當時,再結合(1)中的結論,得到等腰.再根據等腰三角形的三線合一得到是的中點,運用勾股定理和相似三角形的性質進行求解.
(3)此題首先應針對點的位置分為兩種大情況:①與AE相切,②與線段只有一個公共點,不一定必須相切,只要保證和線段只有一個公共點即可.故求得相切時的情況和相交,但其中一個交點在線段外的情況即是的取值范圍.【題目詳解】(1)證明:∵矩形ABCD,∴AD∥BC.∴∠PAF=∠AEB.又∵PF⊥AE,∴△PFA∽△ABE.(2)情況1,當△EFP∽△ABE,且∠PEF=∠EAB時,則有PE∥AB∴四邊形ABEP為矩形,∴PA=EB=3,即x=3.情況2,當△PFE∽△ABE,且∠PEF=∠AEB時,∵∠PAF=∠AEB,∴∠PEF=∠PAF.∴PE=PA.∵PF⊥AE,∴點F為AE的中點,即∴滿足條件的x的值為3或(3)或【題目點撥】兩組角對應相等,兩三角形相似.19、【解題分析】
先代入三角函數值、化簡二次根式、計算零指數冪、取絕對值符號,再計算乘法,最后計算加減可得.【題目詳解】原式===【題目點撥】本題主要考查實數的混合運算,解題的關鍵是熟練掌握實數的混合運算順序和運算法則及零指數冪、絕對值和二次根式的性質.20、(1);(2)1-4a≤y≤4+5a;(3)b=2或-10.【解題分析】
(1)將P(4,-1)代入,可求出解析式
(2)將(4,-1)代入求得:b=-4a-1,再代入對稱軸直線中,可判斷,且開口向上,所以y隨x的增大而減小,再把x=-1,x=2代入即可求得.
(3)觀察圖象可得,當0≤x≤1時,拋物線上的點到x軸距離的最大值為6,這些點可能為x=0,x=1,三種情況,再根據對稱軸在不同位置進行討論即可.【題目詳解】解:(1)由此拋物線頂點為P(4,-1),所以y=a(x-4)2-1=ax2-8ax+16a-1,即16a-1=3,解得a=,b=-8a=-2所以拋物線解析式為:;(2)由此拋物線經過點C(4,-1),所以一1=16a+4b+3,即b=-4a-1.因為拋物線的開口向上,則有其對稱軸為直線,而所以當-1≤x≤2時,y隨著x的增大而減小當x=-1時,y=a+(4a+1)+3=4+5a當x=2時,y=4a-2(4a+1)+3=1-4a所以當-1≤x≤2時,1-4a≤y≤4+5a;(3)當a=1時,拋物線的解析式為y=x2+bx+3∴拋物線的對稱軸為直線由拋物線圖象可知,僅當x=0,x=1或x=-時,拋物線上的點可能離x軸最遠分別代入可得,當x=0時,y=3當x=1時,y=b+4當x=-時,y=-+3①當一<0,即b>0時,3≤y≤b+4,由b+4=6解得b=2②當0≤-≤1時,即一2≤b≤0時,△=b2-12<0,拋物線與x軸無公共點由b+4=6解得b=2(舍去);③當,即b<-2時,b+4≤y≤3,由b+4=-6解得b=-10綜上,b=2或-10【題目點撥】本題考查了二次函數的性質,待定系數法求函數解析式,以及最值問題,關鍵是對稱軸在不同的范圍內,拋物線上的點到x軸距離的最大值的點不同.21、(1);(2)(3,-4)或(5,4)或(-5,4)【解題分析】
(1)設|OA|=1,確定A,B,C三點坐標,然后用待定系數法即可完成;(2)先畫出存在的點,然后通過平移和計算確定坐標;【題目詳解】解:(1)設|OA|=1,則A(-1,0),B(4,0)C(0,4)設拋物線的解析式為y=ax2+bx+c則有:解得所以函數解析式為:(2)存在,(3,-4)或(5,4)或(-5,4)理由如下:如圖:P1相當于C點向右平移了5個單位長度,則坐標為(5,4);P2相當于C點向左平移了5個單位長度,則坐標為(-5,4);設P3坐標為(m,n)在第四象限,要使AP3BC是平行四邊形,則有AP3=BC,BP3=AC∴即(舍去)P3坐標為(3,-4)【題目點撥】本題主要考查了二次函數綜合題,此題涉及到待定系數法求二次函數解析式,通過作圖確認平行四邊形存在,然后通過觀察和計算確定P點坐標;解題的關鍵在于規范作圖,以便于樹形結合.22、(1)證明見解析(2)【解題分析】
(1)由點G是AE的中點,根據垂徑定理可知OD⊥AE,由等腰三角形的性質可得∠CBF=∠DFG,∠D=∠OBD,從而∠OBD+∠CBF=90°,從而可證結論;(2)連接AD,解Rt△OAG可求出OG=3,AG=4,進而可求出DG的長,再證明△DAG∽△FDG,由相似三角形的性質求出FG的長,再由勾股定理即可求出FD的長.【題目詳解】(1)∵點G是AE的中點,∴OD⊥AE,∵FC=BC,∴∠CBF=∠CFB,∵∠CFB=∠DFG,∴∠CBF=∠DFG∵OB=OD,∴∠D=∠OBD,∵∠D+∠DFG=90°,∴∠OBD+∠CBF=90°即∠ABC=90°∵OB是⊙O的半徑,∴BC是⊙O的切線;(2)連接AD,∵OA=5,tanA=,∴OG=3,AG=4,∴DG=OD﹣OG=2,∵AB是⊙O的直徑,∴∠ADF=90°,∵∠DAG+∠ADG=90°,∠ADG+∠FDG=90°∴∠DAG=∠FDG,∴△DAG∽△FDG,∴,∴DG2=AG?FG,∴4=4FG,∴FG=1∴由勾股定理可知:FD=.【題目點撥】本題考查了垂徑定理,等腰三角形的性質,切線的判定,解直角三角形,相似三角形的判定與性質,勾股定理等知識,求出∠CBF=∠DFG,∠D=∠OBD是解(1)的關鍵,證明證明△DAG∽△FDG是解(2)的關鍵.23、(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 財務風險預警與應急預案制定合同
- 城市綠地承包經營管理長期合同
- 小屁孩日記讀后感(15篇)
- 信息系統監理師考生心得體會試題及答案
- 教師2025本年度思想工作總結(12篇)
- 生產部合同工人工資計算方案(完整版)
- 試題及答案互聯網營銷策略應用案例分析
- 農村智能農業遙感技術應用合同書
- 酒店行業客戶關系管理測試題
- 破解2025年軟件測試考試技巧試題及答案
- 風電財務經濟評價講義資料課件
- 中石油職稱英語通用教材
- 2022年廣西高考物理試卷(甲卷)解析版
- 《如何與負面情緒共處》(課件)-小學生心理健康通用版
- 冠寓運營管理手冊正式版
- 熱力管網施工組織設計方案標書
- 蘇教版三下第十單元期末復習教材分析
- 機械通氣基礎知識及基礎操作課件
- 打印版醫師執業注冊健康體檢表(新版)
- 1.3.1動量守恒定律課件(共13張PPT)
- DB36_T 420-2019 江西省工業企業主要產品用水定額(高清無水印-可復制)
評論
0/150
提交評論