新疆阿克蘇地區沙雅縣2024屆中考考前最后一卷數學試卷含解析_第1頁
新疆阿克蘇地區沙雅縣2024屆中考考前最后一卷數學試卷含解析_第2頁
新疆阿克蘇地區沙雅縣2024屆中考考前最后一卷數學試卷含解析_第3頁
新疆阿克蘇地區沙雅縣2024屆中考考前最后一卷數學試卷含解析_第4頁
新疆阿克蘇地區沙雅縣2024屆中考考前最后一卷數學試卷含解析_第5頁
已閱讀5頁,還剩21頁未讀 繼續免費閱讀

VIP免費下載

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

新疆阿克蘇地區沙雅縣2024屆中考考前最后一卷數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,已知函數與的圖象在第二象限交于點,點在的圖象上,且點B在以O點為圓心,OA為半徑的上,則k的值為A. B. C. D.2.估計的值在()A.2和3之間 B.3和4之間 C.4和5之間 D.5和6之間3.等式成立的x的取值范圍在數軸上可表示為(

)A. B. C. D.4.的倒數的絕對值是()A. B. C. D.5.如圖,已知垂直于的平分線于點,交于點,,若的面積為1,則的面積是()A. B. C. D.6.一元二次方程x2﹣8x﹣2=0,配方的結果是()A.(x+4)2=18 B.(x+4)2=14 C.(x﹣4)2=18 D.(x﹣4)2=147.下列各式中,正確的是()A.﹣(x﹣y)=﹣x﹣y B.﹣(﹣2)﹣1= C.﹣ D.8.如圖,在中,.點是的中點,連結,過點作,分別交于點,與過點且垂直于的直線相交于點,連結.給出以下四個結論:①;②點是的中點;③;④,其中正確的個數是()A.4 B.3 C.2 D.19.如圖,已知E,F分別為正方形ABCD的邊AB,BC的中點,AF與DE交于點M,O為BD的中點,則下列結論:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正確結論的是()A.①③④ B.②④⑤ C.①③⑤ D.①③④⑤10.如圖,點D、E分別為△ABC的邊AB、AC上的中點,則△ADE的面積與四邊形BCED的面積的比為()A.1:2 B.1:3 C.1:4 D.1:1二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在矩形ABCD中,對角線BD的長為1,點P是線段BD上的一點,聯結CP,將△BCP沿著直線CP翻折,若點B落在邊AD上的點E處,且EP//AB,則AB的長等于________.12.已知正方形ABCD,AB=1,分別以點A、C為圓心畫圓,如果點B在圓A外,且圓A與圓C外切,那么圓C的半徑長r的取值范圍是_____.13.分解因式:3x2-6x+3=__.14.計算(﹣3)+(﹣9)的結果為______.15.已知:ab=23,則16.已知點P在一次函數y=kx+b(k,b為常數,且k<0,b>0)的圖象上,將點P向左平移1個單位,再向上平移2個單位得到點Q,點Q也在該函數y=kx+b的圖象上.(1)k的值是;(2)如圖,該一次函數的圖象分別與x軸、y軸交于A,B兩點,且與反比例函數y=圖象交于C,D兩點(點C在第二象限內),過點C作CE⊥x軸于點E,記S1為四邊形CEOB的面積,S2為△OAB的面積,若=,則b的值是.17.如圖,在中,,點D、E分別在邊、上,且,如果,,那么________.三、解答題(共7小題,滿分69分)18.(10分)某景區在同一線路上順次有三個景點A,B,C,甲、乙兩名游客從景點A出發,甲步行到景點C;乙花20分鐘時間排隊后乘觀光車先到景點B,在B處停留一段時間后,再步行到景點C.甲、乙兩人離景點A的路程s(米)關于時間t(分鐘)的函數圖象如圖所示.甲的速度是______米/分鐘;當20≤t≤30時,求乙離景點A的路程s與t的函數表達式;乙出發后多長時間與甲在途中相遇?若當甲到達景點C時,乙與景點C的路程為360米,則乙從景點B步行到景點C的速度是多少?19.(5分)如圖,一次函數y=kx+b與反比例函數y=的圖象在第一象限交于點A(4,3),與y軸的負半軸交于點B,且OA=OB.(1)求一次函數y=kx+b和y=的表達式;(2)已知點C在x軸上,且△ABC的面積是8,求此時點C的坐標;(3)反比例函數y=(1≤x≤4)的圖象記為曲線C1,將C1向右平移3個單位長度,得曲線C2,則C1平移至C2處所掃過的面積是_________.(直接寫出答案)20.(8分)如圖,已知在中,,是的平分線.(1)作一個使它經過兩點,且圓心在邊上;(不寫作法,保留作圖痕跡)(2)判斷直線與的位置關系,并說明理由.21.(10分)如圖,在平面直角坐標系中,矩形OABC的頂點A,C分別在x軸,y軸的正半軸上,且OA=4,OC=3,若拋物線經過O,A兩點,且頂點在BC邊上,對稱軸交AC于點D,動點P在拋物線對稱軸上,動點Q在拋物線上.(1)求拋物線的解析式;(2)當PO+PC的值最小時,求點P的坐標;(3)是否存在以A,C,P,Q為頂點的四邊形是平行四邊形?若存在,請直接寫出P,Q的坐標;若不存在,請說明理由.22.(10分)已知關于的二次函數(1)當時,求該函數圖像的頂點坐標.(2)在(1)條件下,為該函數圖像上的一點,若關于原點的對稱點也落在該函數圖像上,求的值(3)當函數的圖像經過點(1,0)時,若是該函數圖像上的兩點,試比較與的大小.23.(12分)反比例函數在第一象限的圖象如圖所示,過點A(2,0)作x軸的垂線,交反比例函數的圖象于點M,△AOM的面積為2.求反比例函數的解析式;設點B的坐標為(t,0),其中t>2.若以AB為一邊的正方形有一個頂點在反比例函數的圖象上,求t的值.24.(14分)如圖,已知拋物線經過原點o和x軸上一點A(4,0),拋物線頂點為E,它的對稱軸與x軸交于點D.直線y=﹣2x﹣1經過拋物線上一點B(﹣2,m)且與y軸交于點C,與拋物線的對稱軸交于點F.(1)求m的值及該拋物線對應的解析式;(2)P(x,y)是拋物線上的一點,若S△ADP=S△ADC,求出所有符合條件的點P的坐標;(3)點Q是平面內任意一點,點M從點F出發,沿對稱軸向上以每秒1個單位長度的速度勻速運動,設點M的運動時間為t秒,是否能使以Q、A、E、M四點為頂點的四邊形是菱形.若能,請直接寫出點M的運動時間t的值;若不能,請說明理由.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解題分析】

由題意,因為與反比例函數都是關于直線對稱,推出A與B關于直線對稱,推出,可得,求出m即可解決問題;【題目詳解】函數與的圖象在第二象限交于點,點與反比例函數都是關于直線對稱,與B關于直線對稱,,,點故選:A.【題目點撥】本題考查反比例函數與一次函數的交點問題,反比例函數的圖像與性質,圓的對稱性及軸對稱的性質.解題的關鍵是靈活運用所學知識解決問題,本題的突破點是發現A,B關于直線對稱.2、D【解題分析】

尋找小于26的最大平方數和大于26的最小平方數即可.【題目詳解】解:小于26的最大平方數為25,大于26的最小平方數為36,故,即:,故選擇D.【題目點撥】本題考查了二次根式的相關定義.3、B【解題分析】

根據二次根式有意義的條件即可求出的范圍.【題目詳解】由題意可知:,解得:,故選:.【題目點撥】考查二次根式的意義,解題的關鍵是熟練運用二次根式有意義的條件.4、D【解題分析】

直接利用倒數的定義結合絕對值的性質分析得出答案.【題目詳解】解:?的倒數為?,則?的絕對值是:.故答案選:D.【題目點撥】本題考查了倒數的定義與絕對值的性質,解題的關鍵是熟練的掌握倒數的定義與絕對值的性質.5、B【解題分析】

先證明△ABD≌△EBD,從而可得AD=DE,然后先求得△AEC的面積,繼而可得到△CDE的面積.【題目詳解】∵BD平分∠ABC,∴∠ABD=∠EBD,∵AE⊥BD,∴∠ADB=∠EDB=90°,又∵BD=BD,∴△ABD≌△EBD,∴AD=ED,∵,的面積為1,∴S△AEC=S△ABC=,又∵AD=ED,∴S△CDE=S△AEC=,故選B.【題目點撥】本題考查了全等三角形的判定,掌握等高的兩個三角形的面積之比等于底邊長度之比是解題的關鍵.6、C【解題分析】x2-8x=2,

x2-8x+16=1,

(x-4)2=1.

故選C.【題目點撥】本題考查了解一元二次方程-配方法:將一元二次方程配成(x+m)2=n的形式,再利用直接開平方法求解,這種解一元二次方程的方法叫配方法.7、B【解題分析】

A.括號前是負號去括號都變號;B負次方就是該數次方后的倒數,再根據前面兩個負號為正;C.兩個負號為正;D.三次根號和二次根號的算法.【題目詳解】A選項,﹣(x﹣y)=﹣x+y,故A錯誤;B選項,﹣(﹣2)﹣1=,故B正確;C選項,﹣,故C錯誤;D選項,22,故D錯誤.【題目點撥】本題考查去括號法則的應用,分式的性質,二次根式的算法,熟記知識點是解題的關鍵.8、C【解題分析】

用特殊值法,設出等腰直角三角形直角邊的長,證明△CDB∽△BDE,求出相關線段的長;易證△GAB≌△DBC,求出相關線段的長;再證AG∥BC,求出相關線段的長,最后求出△ABC和△BDF的面積,即可作出選擇.【題目詳解】解:由題意知,△ABC是等腰直角三角形,設AB=BC=2,則AC=2,∵點D是AB的中點,∴AD=BD=1,在Rt△DBC中,DC=,(勾股定理)∵BG⊥CD,∴∠DEB=∠ABC=90°,又∵∠CDB=∠BDE,∴△CDB∽△BDE,∴∠DBE=∠DCB,,即∴DE=,BE=,在△GAB和△DBC中,∴△GAB≌△DBC(ASA)∴AG=DB=1,BG=CD=,∵∠GAB+∠ABC=180°,∴AG∥BC,∴△AGF∽△CBF,∴,且有AB=BC,故①正確,∵GB=,AC=2,∴AF==,故③正確,GF=,FE=BG﹣GF﹣BE=,故②錯誤,S△ABC=AB?AC=2,S△BDF=BF?DE=××=,故④正確.故選B.【題目點撥】本題考查了相似三角形的判定與性質、全等三角形的判定與性質以及等腰直角三角形的相關性質,中等難度,注意合理的運用特殊值法是解題關鍵.9、D【解題分析】

根據正方形的性質可得AB=BC=AD,∠ABC=∠BAD=90°,再根據中點定義求出AE=BF,然后利用“邊角邊”證明△ABF和△DAE全等,根據全等三角形對應角相等可得∠BAF=∠ADE,然后求出∠ADE+∠DAF=∠BAD=90°,從而求出∠AMD=90°,再根據鄰補角的定義可得∠AME=90°,從而判斷①正確;根據中線的定義判斷出∠ADE≠∠EDB,然后求出∠BAF≠∠EDB,判斷出②錯誤;根據直角三角形的性質判斷出△AED、△MAD、△MEA三個三角形相似,利用相似三角形對應邊成比例可得,然后求出MD=2AM=4EM,判斷出④正確,設正方形ABCD的邊長為2a,利用勾股定理列式求出AF,再根據相似三角形對應邊成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判斷出⑤正確;過點M作MN⊥AB于N,求出MN、NB,然后利用勾股定理列式求出BM,過點M作GH∥AB,過點O作OK⊥GH于K,然后求出OK、MK,再利用勾股定理列式求出MO,根據正方形的性質求出BO,然后利用勾股定理逆定理判斷出∠BMO=90°,從而判斷出③正確.【題目詳解】在正方形ABCD中,AB=BC=AD,∠ABC=∠BAD=90°,

∵E、F分別為邊AB,BC的中點,

∴AE=BF=BC,

在△ABF和△DAE中,,

∴△ABF≌△DAE(SAS),

∴∠BAF=∠ADE,

∵∠BAF+∠DAF=∠BAD=90°,

∴∠ADE+∠DAF=∠BAD=90°,

∴∠AMD=180°-(∠ADE+∠DAF)=180°-90°=90°,

∴∠AME=180°-∠AMD=180°-90°=90°,故①正確;

∵DE是△ABD的中線,

∴∠ADE≠∠EDB,

∴∠BAF≠∠EDB,故②錯誤;

∵∠BAD=90°,AM⊥DE,

∴△AED∽△MAD∽△MEA,

∴∴AM=2EM,MD=2AM,

∴MD=2AM=4EM,故④正確;

設正方形ABCD的邊長為2a,則BF=a,

在Rt△ABF中,AF=∵∠BAF=∠MAE,∠ABC=∠AME=90°,

∴△AME∽△ABF,

∴,

即,

解得AM=

∴MF=AF-AM=,

∴AM=MF,故⑤正確;

如圖,過點M作MN⊥AB于N,

則即解得MN=,AN=,

∴NB=AB-AN=2a-=,

根據勾股定理,BM=過點M作GH∥AB,過點O作OK⊥GH于K,

則OK=a-=,MK=-a=,

在Rt△MKO中,MO=根據正方形的性質,BO=2a×,

∵BM2+MO2=

∴BM2+MO2=BO2,

∴△BMO是直角三角形,∠BMO=90°,故③正確;

綜上所述,正確的結論有①③④⑤共4個.故選:D【題目點撥】本題考查了正方形的性質,全等三角形的判定與性質,相似三角形的判定與性質,勾股定理的應用,勾股定理逆定理的應用,綜合性較強,難度較大,仔細分析圖形并作出輔助線構造出直角三角形與相似三角形是解題的關鍵.10、B【解題分析】

根據中位線定理得到DE∥BC,DE=BC,從而判定△ADE∽△ABC,然后利用相似三角形的性質求解.【題目詳解】解:∵D、E分別為△ABC的邊AB、AC上的中點,∴DE是△ABC的中位線,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴△ADE的面積:△ABC的面積==1:4,∴△ADE的面積:四邊形BCED的面積=1:3;故選B.【題目點撥】本題考查三角形中位線定理及相似三角形的判定與性質.二、填空題(共7小題,每小題3分,滿分21分)11、【解題分析】

設CD=AB=a,利用勾股定理可得到Rt△CDE中,DE2=CE2-CD2=1-2a2,Rt△DEP中,DE2=PD2-PE2=1-2PE,進而得出PE=a2,再根據△DEP∽△DAB,即可得到,即,可得,即可得到AB的長等于.【題目詳解】如圖,設CD=AB=a,則BC2=BD2-CD2=1-a2,

由折疊可得,CE=BC,BP=EP,

∴CE2=1-a2,

∴Rt△CDE中,DE2=CE2-CD2=1-2a2,

∵PE∥AB,∠A=90°,

∴∠PED=90°,

∴Rt△DEP中,DE2=PD2-PE2=(1-PE)2-PE2=1-2PE,

∴PE=a2,

∵PE∥AB,

∴△DEP∽△DAB,

∴,即,

∴,

即a2+a-1=0,

解得(舍去),

∴AB的長等于AB=.故答案為.12、﹣1<r<.【解題分析】

首先根據題意求得對角線AC的長,設圓A的半徑為R,根據點B在圓A外,得出0<R<1,則-1<-R<0,再根據圓A與圓C外切可得R+r=,利用不等式的性質即可求出r的取值范圍.【題目詳解】∵正方形ABCD中,AB=1,

∴AC=,

設圓A的半徑為R,

∵點B在圓A外,

∴0<R<1,

∴-1<-R<0,

∴-1<-R<.

∵以A、C為圓心的兩圓外切,

∴兩圓的半徑的和為,

∴R+r=,r=-R,

∴-1<r<.

故答案為:-1<r<.【題目點撥】本題考查了圓與圓的位置關系,點與圓的位置關系,正方形的性質,勾股定理,不等式的性質.掌握位置關系與數量之間的關系是解題的關鍵.13、3(x-1)2【解題分析】

先提取公因式3,再對余下的多項式利用完全平方公式繼續分解.【題目詳解】.故答案是:3(x-1)2.【題目點撥】考查了用提公因式法和公式法進行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.14、-1【解題分析】試題分析:利用同號兩數相加的法則計算即可得原式=﹣(3+9)=﹣1,故答案為﹣1.15、–12【解題分析】

根據已知等式設a=2k,b=3k,代入式子可求出答案.【題目詳解】解:由ab故:a-2bb+2b故答案:-1【題目點撥】此題主要考查比例的性質,a、b都用k表示是解題的關鍵.16、(1)-2;(2)【解題分析】

(1)設點P的坐標為(m,n),則點Q的坐標為(m?1,n+2),依題意得:,解得:k=?2.故答案為?2.(2)∵BO⊥x軸,CE⊥x軸,∴BO∥CE,∴△AOB∽△AEC.又∵,∴令一次函數y=?2x+b中x=0,則y=b,∴BO=b;令一次函數y=?2x+b中y=0,則0=?2x+b,解得:x=,即AO=.∵△AOB∽△AEC,且,∴,∴AE=,AO=,CE=BO=b,OE=AE?AO=.∵OE?CE=|?4|=4,即=4,解得:b=,或b=?(舍去).故答案為.17、【解題分析】

根據,,得出,利用相似三角形的性質解答即可.【題目詳解】∵,,∴,∴,即,∴,∵,∴,故答案為:【題目點撥】本題考查了相似三角形的判定與性質.關鍵是要懂得找相似三角形,利用相似三角形的性質求解.三、解答題(共7小題,滿分69分)18、(1)60;(2)s=10t-6000;(3)乙出發5分鐘和1分鐘時與甲在途中相遇;(4)乙從景點B步行到景點C的速度是2米/分鐘.【解題分析】

(1)觀察圖像得出路程和時間,即可解決問題.(2)利用待定系數法求一次函數解析式即可;(3)分兩種情況討論即可;(4)設乙從B步行到C的速度是x米/分鐘,根據當甲到達景點C時,乙與景點C的路程為360米,所用的時間為(90-60)分鐘,列方程求解即可.【題目詳解】(1)甲的速度為60米/分鐘.(2)當20≤t≤1時,設s=mt+n,由題意得:,解得:,所以s=10t-6000;(3)①當20≤t≤1時,60t=10t-6000,解得:t=25,25-20=5;②當1≤t≤60時,60t=100,解得:t=50,50-20=1.綜上所述:乙出發5分鐘和1分鐘時與甲在途中相遇.(4)設乙從B步行到C的速度是x米/分鐘,由題意得:5400-100-(90-60)x=360解得:x=2.答:乙從景點B步行到景點C的速度是2米/分鐘.【題目點撥】本題考查了待定系數法求一次函數解析式、行程問題等知識,解題的關鍵是理解題意,讀懂圖像信息,學會構建一次函數解決實際問題,屬于中考常考題型.19、(1),;(2)點C的坐標為或;(3)2.【解題分析】試題分析:(1)由點A的坐標利用反比例函數圖象上點的坐標特征即可求出a值,從而得出反比例函數解析式;由勾股定理得出OA的長度從而得出點B的坐標,由點A、B的坐標利用待定系數法即可求出直線AB的解析式;

(2)設點C的坐標為(m,0),令直線AB與x軸的交點為D,根據三角形的面積公式結合△ABC的面積是8,可得出關于m的含絕對值符號的一元一次方程,解方程即可得出m值,從而得出點C的坐標;

(3)設點E的橫坐標為1,點F的橫坐標為6,點M、N分別對應點E、F,根據反比例函數解析式以及平移的性質找出點E、F、M、N的坐標,根據EM∥FN,且EM=FN,可得出四邊形EMNF為平行四邊形,再根據平行四邊形的面積公式求出平行四邊形EMNF的面積S,根據平移的性質即可得出C1平移至C2處所掃過的面積正好為S.試題解析:(1)∵點A(4,3)在反比例函數y=的圖象上,∴a=4×3=12,∴反比例函數解析式為y=;∵OA==1,OA=OB,點B在y軸負半軸上,∴點B(0,﹣1).把點A(4,3)、B(0,﹣1)代入y=kx+b中,得:,解得:,∴一次函數的解析式為y=2x﹣1.(2)設點C的坐標為(m,0),令直線AB與x軸的交點為D,如圖1所示.令y=2x﹣1中y=0,則x=,∴D(,0),∴S△ABC=CD?(yA﹣yB)=|m﹣|×[3﹣(﹣1)]=8,解得:m=或m=.故當△ABC的面積是8時,點C的坐標為(,0)或(,0).(3)設點E的橫坐標為1,點F的橫坐標為6,點M、N分別對應點E、F,如圖2所示.令y=中x=1,則y=12,∴E(1,12),;令y=中x=4,則y=3,∴F(4,3),∵EM∥FN,且EM=FN,∴四邊形EMNF為平行四邊形,∴S=EM?(yE﹣yF)=3×(12﹣3)=2.C1平移至C2處所掃過的面積正好為平行四邊形EMNF的面積.故答案為2.【題目點撥】運用了反比例函數圖象上點的坐標特征、待定系數法求函數解析式、三角形的面積以及平行四邊形的面積,解題的關鍵是:(1)利用待定系數法求出函數解析式;(2)找出關于m的含絕對值符號的一元一次方程;(3)求出平行四邊形EMNF的面積.本題屬于中檔題,難度不小,解決(3)時,巧妙的借助平行四邊的面積公式求出C1平移至C2處所掃過的面積,此處要注意數形結合的重要性.20、(1)見解析;(2)與相切,理由見解析.【解題分析】

(1)作出AD的垂直平分線,交AB于點O,進而利用AO為半徑求出即可;

(2)利用半徑相等結合角平分線的性質得出OD∥AC,進而求出OD⊥BC,進而得出答案.【題目詳解】(1)①分別以為圓心,大于的長為半徑作弧,兩弧相交于點和,②作直線,與相交于點,③以為圓心,為半徑作圓,如圖即為所作;(2)與相切,理由如下:連接OD,為半徑,,是等腰三角形,,平分,,,,,,,為半徑,與相切.【題目點撥】本題主要考查了切線的判定以及線段垂直平分線的作法與性質等知識,掌握切線的判定方法是解題關鍵.21、(1)y=x2+3x;(2)當PO+PC的值最小時,點P的坐標為(2,);(3)存在,具體見解析.【解題分析】

(1)由條件可求得拋物線的頂點坐標及A點坐標,利用待定系數法可求得拋物線解析式;(2)D與P重合時有最小值,求出點D的坐標即可;(3)存在,分別根據①AC為對角線,②AC為邊,兩種情況,分別求解即可.【題目詳解】(1)在矩形OABC中,OA=4,OC=3,∴A(4,0),C(0,3),∵拋物線經過O、A兩點,且頂點在BC邊上,∴拋物線頂點坐標為(2,3),∴可設拋物線解析式為y=a(x﹣2)2+3,把A點坐標代入可得0=a(4﹣2)2+3,解得a=,∴拋物線解析式為y=(x﹣2)2+3,即y=x2+3x;(2)∵點P在拋物線對稱軸上,∴PA=PO,∴PO+PC=PA+PC.∴當點P與點D重合時,PA+PC=AC;當點P不與點D重合時,PA+PC>AC;∴當點P與點D重合時,PO+PC的值最小,設直線AC的解析式為y=kx+b,根據題意,得解得∴直線AC的解析式為,當x=2時,,∴當PO+PC的值最小時,點P的坐標為(2,);(3)存在.①AC為對角線,當四邊形AQCP為平行四邊形,點Q為拋物線的頂點,即Q(2,3),則P(2,0);②AC為邊,當四邊形AQPC為平行四邊形,點C向右平移2個單位得到P,則點A向右平移2個單位得到點Q,則Q點的橫坐標為6,當x=6時,,此時Q(6,?9),則點A(4,0)向右平移2個單位,向下平移9個單位得到點Q,所以點C(0,3)向右平移2個單位,向下平移9個單位得到點P,則P(2,?6);當四邊形APQC為平行四邊形,點A向左平移2個單位得到P,則點C向左平移2個單位得到點Q,則Q點的橫坐標為?2,當x=?2時,,此時Q(?2,?9),則點C(0,3)向左平移2個單位,向下平移12個單位得到點Q,所以點A(4,0)向左平移2個單位,向下平移12個單位得到點P,則P(2,?12);綜上所述,P(2,0),Q(2,3)或P(2,?6),Q(6,?9)或P(2,?12),Q(?2,?9).【題目點撥】二次函數的綜合應用,涉及矩形的性質、待定系數法、平行四邊形的性質、方程思想及分類討論思想等知識.22、(1),頂點坐標(1,-4);(2)m=1;(3)①當a>0時,y2>y1,②當a<0時,y1>y2.【解題分析】試題分析:(1)把a=2,b=4代入并配方,即可求出此時二次函數圖象的頂點坐標;(2)由題意把(m,t)和(-m,-t)代入(1)中所得函數的解析式,解方程組即可求得m的值;(3)把點(1,0)代入可得b=a-2,由此可得拋物線的對稱軸為直線:,再分a>0和a<0兩種情況分別討論即可y1和y2的大小關系了.試題解析:(1)把a=2,b=4代入得:,∴此時二次函數的圖象的頂點坐標為(1,-4);(2)由題意,把(m,t)和(-m,-t)代入得:①,②,由①+②得:,解得:;(3)把點(1,0)代入得a-b-2=0,∴b=a-2,∴此時該二次函數圖象的對稱軸為直線:,①當a>0時,,,∵此時,且拋物線開口向上,∴中,點B距離對稱軸更遠,∴y1<y2;②當a<0時,,,∵此時,且拋物線開口向下,∴中,點B距離對稱軸更遠,∴y1>y2;綜上所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論