




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
重慶市巫溪縣重點達標名校2024屆中考數(shù)學仿真試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列計算正確的是()A.x4?x4=x16B.(a+b)2=a2+b2C.16=±4D.(a6)2÷(a4)3=12.下列式子成立的有()個①﹣的倒數(shù)是﹣2②(﹣2a2)3=﹣8a5③()=﹣2④方程x2﹣3x+1=0有兩個不等的實數(shù)根A.1 B.2 C.3 D.43.下列計算正確的是()A.x2x3=x6 B.(m+3)2=m2+9C.a(chǎn)10÷a5=a5 D.(xy2)3=xy64.若點A(a,b),B(,c)都在反比例函數(shù)y=的圖象上,且﹣1<c<0,則一次函數(shù)y=(b﹣c)x+ac的大致圖象是()A. B.C. D.5.如圖所示,將矩形紙片ABCD折疊,使點D與點B重合,點C落在點C′處,折痕為EF,若∠ABE=20°,那么∠EFC′的度數(shù)為()A.115° B.120° C.125° D.130°6.下列各運算中,計算正確的是()A.a(chǎn)12÷a3=a4 B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2 D.2a?3a=6a27.下列說法錯誤的是()A.的相反數(shù)是2 B.3的倒數(shù)是C. D.,0,4這三個數(shù)中最小的數(shù)是08.已知函數(shù)y=ax2+bx+c的圖象如圖所示,則關(guān)于x的方程ax2+bx+c﹣4=0的根的情況是A.有兩個相等的實數(shù)根 B.有兩個異號的實數(shù)根C.有兩個不相等的實數(shù)根 D.沒有實數(shù)根9.某區(qū)10名學生參加市級漢字聽寫大賽,他們得分情況如上表:那么這10名學生所得分數(shù)的平均數(shù)和眾數(shù)分別是()人數(shù)3421分數(shù)80859095A.85和82.5 B.85.5和85 C.85和85 D.85.5和8010.已知:如圖四邊形OACB是菱形,OB在X軸的正半軸上,sin∠AOB=1213.反比例函數(shù)y=kx在第一象限圖象經(jīng)過點A,與BC交于點F.S△AOF=A.15 B.13 C.12 D.5二、填空題(共7小題,每小題3分,滿分21分)11.如果把拋物線y=2x2﹣1向左平移1個單位,同時向上平移4個單位,那么得到的新的拋物線是_____.12.如圖,AB是⊙O的弦,∠OAB=30°.OC⊥OA,交AB于點C,若OC=6,則AB的長等于__.13.對于函數(shù)y=,當函數(shù)y﹤-3時,自變量x的取值范圍是____________.14.近年來,我國持續(xù)大面積的霧霾天氣讓環(huán)保和健康問題成為焦點.為進一步普及環(huán)保和健康知識,我市某校舉行了“建設(shè)宜居成都,關(guān)注環(huán)境保護”的知識競賽,某班的學生成績統(tǒng)計如下:成績(分)60708090100人數(shù)4812115則該辦學生成績的眾數(shù)和中位數(shù)分別是()A.70分,80分B.80分,80分C.90分,80分D.80分,90分15.若a、b為實數(shù),且b=+4,則a+b=_____.16.⊙O的半徑為10cm,AB,CD是⊙O的兩條弦,且AB∥CD,AB=16cm,CD=12cm.則AB與CD之間的距離是cm.17.百子回歸圖是由1,2,3,…,100無重復排列而成的正方形數(shù)表,它是一部數(shù)化的澳門簡史,如:中央四位“19991220”標示澳門回歸日期,最后一行中間兩位“2350”標示澳門面積,…,同時它也是十階幻方,其每行10個數(shù)之和、每列10個數(shù)之和、每條對角線10個數(shù)之和均相等,則這個和為______.百子回歸三、解答題(共7小題,滿分69分)18.(10分)如圖1,矩形ABCD中,E是AD的中點,以點E直角頂點的直角三角形EFG的兩邊EF,EG分別過點B,C,∠F=30°.(1)求證:BE=CE(2)將△EFG繞點E按順時針方向旋轉(zhuǎn),當旋轉(zhuǎn)到EF與AD重合時停止轉(zhuǎn)動.若EF,EG分別與AB,BC相交于點M,N.(如圖2)①求證:△BEM≌△CEN;②若AB=2,求△BMN面積的最大值;③當旋轉(zhuǎn)停止時,點B恰好在FG上(如圖3),求sin∠EBG的值.19.(5分)如圖,拋物線y=-x2+bx+c與x軸交于A、B兩點,且B點的坐標為(3,0),經(jīng)過A點的直線交拋物線于點D(2,3).求拋物線的解析式和直線AD的解析式;過x軸上的點E(a,0)作直線EF∥AD,交拋物線于點F,是否存在實數(shù)a,使得以A、D、E、F為頂點的四邊形是平行四邊形?如果存在,求出滿足條件的a;如果不存在,請說明理由.20.(8分)問題提出(1)如圖1,正方形ABCD的對角線交于點O,△CDE是邊長為6的等邊三角形,則O、E之間的距離為;問題探究(2)如圖2,在邊長為6的正方形ABCD中,以CD為直徑作半圓O,點P為弧CD上一動點,求A、P之間的最大距離;問題解決(3)窯洞是我省陜北農(nóng)村的主要建筑,窯洞賓館更是一道靚麗的風景線,是因為窯洞除了它的堅固性及特有的外在美之外,還具有冬暖夏涼的天然優(yōu)點家住延安農(nóng)村的一對即將參加中考的雙胞胎小寶和小貝兩兄弟,發(fā)現(xiàn)自家的窯洞(如圖3所示)的門窗是由矩形ABCD及弓形AMD組成,AB=2m,BC=3.2m,弓高MN=1.2m(N為AD的中點,MN⊥AD),小寶說,門角B到門窗弓形弧AD的最大距離是B、M之間的距離.小貝說這不是最大的距離,你認為誰的說法正確?請通過計算求出門角B到門窗弓形弧AD的最大距離.21.(10分)如圖1,三個正方形ABCD、AEMN、CEFG,其中頂點D、C、G在同一條直線上,點E是BC邊上的動點,連結(jié)AC、AM.(1)求證:△ACM∽△ABE.(2)如圖2,連結(jié)BD、DM、MF、BF,求證:四邊形BFMD是平行四邊形.(3)若正方形ABCD的面積為36,正方形CEFG的面積為4,求五邊形ABFMN的面積.22.(10分)已知:二次函數(shù)C1:y1=ax2+2ax+a﹣1(a≠0)把二次函數(shù)C1的表達式化成y=a(x﹣h)2+b(a≠0)的形式,并寫出頂點坐標;已知二次函數(shù)C1的圖象經(jīng)過點A(﹣3,1).①求a的值;②點B在二次函數(shù)C1的圖象上,點A,B關(guān)于對稱軸對稱,連接AB.二次函數(shù)C2:y2=kx2+kx(k≠0)的圖象,與線段AB只有一個交點,求k的取值范圍.23.(12分)當前,“精準扶貧”工作已進入攻堅階段,凡貧困家庭均要“建檔立卡”.某初級中學七年級共有四個班,已“建檔立卡”的貧困家庭的學生人數(shù)按一、二、三、四班分別記為A1,A2,A3,A4,現(xiàn)對A1,A2,A3,A4統(tǒng)計后,制成如圖所示的統(tǒng)計圖.(1)求七年級已“建檔立卡”的貧困家庭的學生總?cè)藬?shù);(2)將條形統(tǒng)計圖補充完整,并求出A1所在扇形的圓心角的度數(shù);(3)現(xiàn)從A1,A2中各選出一人進行座談,若A1中有一名女生,A2中有兩名女生,請用樹狀圖表示所有可能情況,并求出恰好選出一名男生和一名女生的概率.24.(14分)計算(﹣)﹣2﹣(π﹣3)0+|﹣2|+2sin60°;
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解題分析】試題分析:x4x4=x8(同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加);(a+b)2=a2+b2+2ab(完全平方公式);(表示16的算術(shù)平方根取正號);(a6)考點:1、冪的運算;2、完全平方公式;3、算術(shù)平方根.2、B【解題分析】
根據(jù)倒數(shù)的定義,冪的乘方、二次根式的混合運算法則以及根的判別式進行判斷.【題目詳解】解:①﹣的倒數(shù)是﹣2,故正確;②(﹣2a2)3=﹣8a6,故錯誤;③(-)=﹣2,故錯誤;④因為△=(﹣3)2﹣4×1×1=5>0,所以方程x2﹣3x+1=0有兩個不等的實數(shù)根,故正確.故選B.【題目點撥】考查了倒數(shù)的定義,冪的乘方、二次根式的混合運算法則以及根的判別式,屬于比較基礎(chǔ)的題目,熟記計算法則即可解答.3、C【解題分析】
根據(jù)乘方的運算法則、完全平方公式、同底數(shù)冪的除法和積的乘方進行計算即可得到答案.【題目詳解】x2?x3=x5,故選項A不合題意;(m+3)2=m2+6m+9,故選項B不合題意;a10÷a5=a5,故選項C符合題意;(xy2)3=x3y6,故選項D不合題意.故選:C.【題目點撥】本題考查乘方的運算法則、完全平方公式、同底數(shù)冪的除法和積的乘方解題的關(guān)鍵是掌握乘方的運算法則、完全平方公式、同底數(shù)冪的除法和積的乘方的運算.4、D【解題分析】
將,代入,得,,然后分析與的正負,即可得到的大致圖象.【題目詳解】將,代入,得,,即,.∴.∵,∴,∴.即與異號.∴.又∵,故選D.【題目點撥】本題考查了反比例函數(shù)圖像上點的坐標特征,一次函數(shù)的圖像與性質(zhì),得出與的正負是解答本題的關(guān)鍵.5、C【解題分析】分析:由已知條件易得∠AEB=70°,由此可得∠DEB=110°,結(jié)合折疊的性質(zhì)可得∠DEF=55°,則由AD∥BC可得∠EFC=125°,再由折疊的性質(zhì)即可得到∠EFC′=125°.詳解:∵在△ABE中,∠A=90°,∠ABE=20°,∴∠AEB=70°,∴∠DEB=180°-70°=110°,∵點D沿EF折疊后與點B重合,∴∠DEF=∠BEF=∠DEB=55°,∵在矩形ABCD中,AD∥BC,∴∠DEF+∠EFC=180°,∴∠EFC=180°-55°=125°,∴由折疊的性質(zhì)可得∠EFC′=∠EFC=125°.故選C.點睛:這是一道有關(guān)矩形折疊的問題,熟悉“矩形的四個內(nèi)角都是直角”和“折疊的性質(zhì)”是正確解答本題的關(guān)鍵.6、D【解題分析】【分析】根據(jù)同底數(shù)冪的除法、積的乘方、完全平方公式、單項式乘法的法則逐項計算即可得.【題目詳解】A、原式=a9,故A選項錯誤,不符合題意;B、原式=27a6,故B選項錯誤,不符合題意;C、原式=a2﹣2ab+b2,故C選項錯誤,不符合題意;D、原式=6a2,故D選項正確,符合題意,故選D.【題目點撥】本題考查了同底數(shù)冪的除法、積的乘方、完全平方公式、單項式乘法等運算,熟練掌握各運算的運算法則是解本題的關(guān)鍵.7、D【解題分析】試題分析:﹣2的相反數(shù)是2,A正確;3的倒數(shù)是,B正確;(﹣3)﹣(﹣5)=﹣3+5=2,C正確;﹣11,0,4這三個數(shù)中最小的數(shù)是﹣11,D錯誤,故選D.考點:1.相反數(shù);2.倒數(shù);3.有理數(shù)大小比較;4.有理數(shù)的減法.8、A【解題分析】
根據(jù)拋物線的頂點坐標的縱坐標為4,判斷方程ax2+bx+c﹣4=0的根的情況即是判斷函數(shù)y=ax2+bx+c的圖象與直線y=4交點的情況.【題目詳解】∵函數(shù)的頂點的縱坐標為4,∴直線y=4與拋物線只有一個交點,∴方程ax2+bx+c﹣4=0有兩個相等的實數(shù)根,故選A.【題目點撥】本題考查了二次函數(shù)與一元二次方程,熟練掌握一元二次方程與二次函數(shù)間的關(guān)系是解題的關(guān)鍵.9、B【解題分析】
根據(jù)眾數(shù)及平均數(shù)的定義,即可得出答案.【題目詳解】解:這組數(shù)據(jù)中85出現(xiàn)的次數(shù)最多,故眾數(shù)是85;平均數(shù)=(80×3+85×4+90×2+95×1)=85.5.故選:B.【題目點撥】本題考查了眾數(shù)及平均數(shù)的知識,掌握各部分的概念是解題關(guān)鍵.10、A【解題分析】
過點A作AM⊥x軸于點M,設(shè)OA=a,通過解直角三角形找出點A的坐標,再根據(jù)四邊形OACB是菱形、點F在邊BC上,即可得出S△AOF=S菱形OBCA,結(jié)合菱形的面積公式即可得出a的值,進而依據(jù)點A的坐標得到k的值.【題目詳解】過點A作AM⊥x軸于點M,如圖所示.設(shè)OA=a=OB,則,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=1213∴AM=OA?sin∠AOB=1213a,OM=5∴點A的坐標為(513a,12∵四邊形OACB是菱形,S△AOF=392∴12OB×AM=39即12×a×12解得a=±132∴a=132,即A(5∵點A在反比例函數(shù)y=kx∴k=52故選A.【解答】解:【點評】本題考查了菱形的性質(zhì)、解直角三角形以及反比例函數(shù)圖象上點的坐標特征,解題的關(guān)鍵是利用S△AOF=12S菱形OBCA二、填空題(共7小題,每小題3分,滿分21分)11、y=2(x+1)2+1.【解題分析】原拋物線的頂點為(0,-1),向左平移1個單位,同時向上平移4個單位,那么新拋物線的頂點為(-1,1);可設(shè)新拋物線的解析式為y=2(x-h)2+k,代入得:y=2(x+1)2+1.12、18【解題分析】連接OB,∵OA=OB,∴∠B=∠A=30°,∵∠COA=90°,∴AC=2OC=2×6=12,∠ACO=60°,∵∠ACO=∠B+∠BOC,∴∠BOC=∠ACO-∠B=30°,∴∠BOC=∠B,∴CB=OC=6,∴AB=AC+BC=18,故答案為18.13、-<x<0【解題分析】
根據(jù)反比例函數(shù)的性質(zhì):y隨x的增大而減小去解答.【題目詳解】解:函數(shù)y=中,y隨x的增大而減小,當函數(shù)y﹤-3時又函數(shù)y=中,故答案為:-<x<0.【題目點撥】此題重點考察學生對反比例函數(shù)性質(zhì)的理解,熟練掌握反比例函數(shù)性質(zhì)是解題的關(guān)鍵.14、B.【解題分析】試題分析:眾數(shù)是在一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)據(jù),這組數(shù)據(jù)中80出現(xiàn)12次,出現(xiàn)的次數(shù)最多,故這組數(shù)據(jù)的眾數(shù)為80分;中位數(shù)是一組數(shù)據(jù)從小到大(或從大到小)排列后,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)).因此這組40個按大小排序的數(shù)據(jù)中,中位數(shù)是按從小到大排列后第20,21個數(shù)的平均數(shù),而第20,21個數(shù)都在80分組,故這組數(shù)據(jù)的中位數(shù)為80分.故選B.考點:1.眾數(shù);2.中位數(shù).15、5或1【解題分析】
根據(jù)二次根式的性質(zhì)和分式的意義,被開方數(shù)大于或等于0,分母不等于0,可以求出a的值,b的值,根據(jù)有理數(shù)的加法,可得答案.【題目詳解】由被開方數(shù)是非負數(shù),得,解得a=1,或a=﹣1,b=4,當a=1時,a+b=1+4=5,當a=﹣1時,a+b=﹣1+4=1,故答案為5或1.【題目點撥】本題考查了函數(shù)表達式有意義的條件,當函數(shù)表達式是整式時,自變量可取全體實數(shù);當函數(shù)表達式是分式時,考慮分式的分母不能為0;當函數(shù)表達式是二次根式時,被開方數(shù)非負.16、2或14【解題分析】
分兩種情況進行討論:①弦AB和CD在圓心同側(cè);②弦AB和CD在圓心異側(cè);作出半徑和弦心距,利用勾股定理和垂徑定理求解即可.【題目詳解】①當弦AB和CD在圓心同側(cè)時,如圖,∵AB=16cm,CD=12cm,∴AE=8cm,CF=6cm,∵OA=OC=10cm,∴EO=6cm,OF=8cm,∴EF=OF?OE=2cm;②當弦AB和CD在圓心異側(cè)時,如圖,∵AB=16cm,CD=12cm,∴AF=8cm,CE=6cm,∵OA=OC=10cm,∴OF=6cm,OE=8cm,∴EF=OF+OE=14cm.∴AB與CD之間的距離為14cm或2cm.故答案為:2或14.17、505【解題分析】
根據(jù)已知得:百子回歸圖是由1,2,3…,100無重復排列而成,先計算總和;又因為一共有10行,且每行10個數(shù)之和均相等,所以每行10個數(shù)之和=總和÷10,代入求解即可.【題目詳解】1~100的總和為:=5050,
一共有10行,且每行10個數(shù)之和均相等,所以每行10個數(shù)之和為:n=5050÷10=505,故答案為505.【題目點撥】本題是數(shù)字變化類的規(guī)律題,是常考題型;一般思路為:按所描述的規(guī)律從1開始計算,從計算的過程中慢慢發(fā)現(xiàn)規(guī)律,總結(jié)出與每一次計算都符合的規(guī)律,就是最后的答案三、解答題(共7小題,滿分69分)18、(1)詳見解析;(1)①詳見解析;②1;③.【解題分析】
(1)只要證明△BAE≌△CDE即可;(1)①利用(1)可知△EBC是等腰直角三角形,根據(jù)ASA即可證明;②構(gòu)建二次函數(shù),利用二次函數(shù)的性質(zhì)即可解決問題;③如圖3中,作EH⊥BG于H.設(shè)NG=m,則BG=1m,BN=EN=m,EB=m.利用面積法求出EH,根據(jù)三角函數(shù)的定義即可解決問題.【題目詳解】(1)證明:如圖1中,∵四邊形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵E是AD中點,∴AE=DE,∴△BAE≌△CDE,∴BE=CE.(1)①解:如圖1中,由(1)可知,△EBC是等腰直角三角形,∴∠EBC=∠ECB=45°,∵∠ABC=∠BCD=90°,∴∠EBM=∠ECN=45°,∵∠MEN=∠BEC=90°,∴∠BEM=∠CEN,∵EB=EC,∴△BEM≌△CEN;②∵△BEM≌△CEN,∴BM=CN,設(shè)BM=CN=x,則BN=4-x,∴S△BMN=?x(4-x)=-(x-1)1+1,∵-<0,∴x=1時,△BMN的面積最大,最大值為1.③解:如圖3中,作EH⊥BG于H.設(shè)NG=m,則BG=1m,BN=EN=m,EB=m.∴EG=m+m=(1+)m,∵S△BEG=?EG?BN=?BG?EH,∴EH==m,在Rt△EBH中,sin∠EBH=.【題目點撥】本題考查四邊形綜合題、矩形的性質(zhì)、等腰直角三角形的判定和性質(zhì)、全等三角形的判定和性質(zhì)、旋轉(zhuǎn)變換、銳角三角函數(shù)等知識,解題的關(guān)鍵是準確尋找全等三角形解決問題,學會添加常用輔助線,學會利用參數(shù)解決問題,19、(1)y=-x2+2x+3;y=x+1;(2)a的值為-3或.【解題分析】
(1)把點B和D的坐標代入拋物線y=-x2+bx+c得出方程組,解方程組即可;由拋物線解析式求出點A的坐標,設(shè)直線AD的解析式為y=kx+a,把A和D的坐標代入得出方程組,解方程組即可;(2)分兩種情況:①當a<-1時,DF∥AE且DF=AE,得出F(0,3),由AE=-1-a=2,求出a的值;②當a>-1時,顯然F應在x軸下方,EF∥AD且EF=AD,設(shè)F(a-3,-3),代入拋物線解析式,即可得出結(jié)果.【題目詳解】解:(1)把點B和D的坐標代入拋物線y=-x2+bx+c得:解得:b=2,c=3,∴拋物線的解析式為y=-x2+2x+3;當y=0時,-x2+2x+3=0,解得:x=3,或x=-1,∵B(3,0),∴A(-1,0);設(shè)直線AD的解析式為y=kx+a,把A和D的坐標代入得:解得:k=1,a=1,∴直線AD的解析式為y=x+1;(2)分兩種情況:①當a<-1時,DF∥AE且DF=AE,則F點即為(0,3),∵AE=-1-a=2,∴a=-3;②當a>-1時,顯然F應在x軸下方,EF∥AD且EF=AD,設(shè)F(a-3,-3),由-(a-3)2+2(a-3)+3=-3,解得:a=;綜上所述,滿足條件的a的值為-3或.【題目點撥】本題考查拋物線與x軸的交點;二次函數(shù)的性質(zhì);待定系數(shù)法求二次函數(shù)解析式及平行四邊形的判定,綜合性較強.20、(1);(2);(2)小貝的說法正確,理由見解析,.【解題分析】
(1)連接AC,BD,由OE垂直平分DC可得DH長,易知OH、HE長,相加即可;(2)補全⊙O,連接AO并延長交⊙O右半側(cè)于點P,則此時A、P之間的距離最大,在Rt△AOD中,由勾股定理可得AO長,易求AP長;(1)小貝的說法正確,補全弓形弧AD所在的⊙O,連接ON,OA,OD,過點O作OE⊥AB于點E,連接BO并延長交⊙O上端于點P,則此時B、P之間的距離即為門角B到門窗弓形弧AD的最大距離,在Rt△ANO中,設(shè)AO=r,由勾股定理可求出r,在Rt△OEB中,由勾股定理可得BO長,易知BP長.【題目詳解】解:(1)如圖1,連接AC,BD,對角線交點為O,連接OE交CD于H,則OD=OC.∵△DCE為等邊三角形,∴ED=EC,∵OD=OC∴OE垂直平分DC,∴DHDC=1.∵四邊形ABCD為正方形,∴△OHD為等腰直角三角形,∴OH=DH=1,在Rt△DHE中,HEDH=1,∴OE=HE+OH=11;(2)如圖2,補全⊙O,連接AO并延長交⊙O右半側(cè)于點P,則此時A、P之間的距離最大,在Rt△AOD中,AD=6,DO=1,∴AO1,∴AP=AO+OP=11;(1)小貝的說法正確.理由如下,如圖1,補全弓形弧AD所在的⊙O,連接ON,OA,OD,過點O作OE⊥AB于點E,連接BO并延長交⊙O上端于點P,則此時B、P之間的距離即為門角B到門窗弓形弧AD的最大距離,由題意知,點N為AD的中點,,∴ANAD=1.6,ON⊥AD,在Rt△ANO中,設(shè)AO=r,則ON=r﹣1.2.∵AN2+ON2=AO2,∴1.62+(r﹣1.2)2=r2,解得:r,∴AE=ON1.2,在Rt△OEB中,OE=AN=1.6,BE=AB﹣AE,∴BO,∴BP=BO+PO,∴門角B到門窗弓形弧AD的最大距離為.【題目點撥】本題考查了圓與多邊形的綜合,涉及了圓的有關(guān)概念及性質(zhì)、等邊三角形的性質(zhì)、正方形和長方形的性質(zhì)、勾股定理等,靈活的利用兩點之間線段最短,添加輔助線將題中所求最大距離轉(zhuǎn)化為圓外一點到圓上的最大距離是解題的關(guān)鍵.21、(1)證明見解析;(2)證明見解析;(3)74.【解題分析】
(1)根據(jù)四邊形ABCD和四邊形AEMN都是正方形得,∠CAB=∠MAC=45°,∠BAE=∠CAM,可證△ACM∽△ABE;(2)連結(jié)AC,由△ACM∽△ABE得∠ACM=∠B=90°,易證∠MCD=∠BDC=45°,得BD∥CM,由MC=BE,F(xiàn)C=CE,得MF=BD,從而可以證明四邊形BFMD是平行四邊形;(3)根據(jù)S五邊形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM求解即可.【題目詳解】(1)證明:∵四邊形ABCD和四邊形AEMN都是正方形,∴,∠CAB=∠MAC=45°,∴∠CAB-∠CAE=∠MAC-∠CAE,∴∠BAE=∠CAM,∴△ACM∽△ABE.(2)證明:連結(jié)AC因為△ACM∽△ABE,則∠ACM=∠B=90°,因為∠ACB=∠ECF=45°,所以∠ACM+∠ACB+∠ECF=180°,所以點M,C,F在同一直線上,所以∠MCD=∠BDC=45°,所以BD平行MF,又因為MC=BE,F(xiàn)C=CE,所以MF=BC=BD,所以四邊形BFMD是平行四邊形(3)S五邊形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM=62+42+(2+6)4+26=74.【題目點撥】本題主要考查了正方形的性質(zhì)的應用,解此題的關(guān)鍵是能正確作出輔助線,綜
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 景區(qū)項目活動方案
- 杰出民警訪談活動方案
- 本田精英賽活動方案
- 暑假戶外晨讀活動方案
- 村民普法活動方案
- 機構(gòu)游戲活動方案
- 普法項目活動方案
- 春節(jié)超市拜年活動方案
- 暑假少兒旅行活動方案
- 普及憲法活動方案
- 【信得科技】2025豬細菌病防控手冊
- 罐頭食品制造企業(yè)數(shù)字化轉(zhuǎn)型與智慧升級戰(zhàn)略研究報告
- 電動車維修與保養(yǎng)考核試卷
- “住改商”登記利害關(guān)系業(yè)主同意證明(參考樣本)
- 智能化綜合農(nóng)貿(mào)市場建設(shè)方案與可行性分析
- 檔案工作“三納入、四參加、四同步”制度
- 企業(yè)迎檢工作要點
- 中醫(yī)知識與優(yōu)生優(yōu)育
- 浙江省湖州市2023-2024學年高一下學期6月期末考試 地理 含解析
- 食品安全法從業(yè)人員管理制度
- 工廠班組安全培訓課件
評論
0/150
提交評論