內蒙古錦山蒙古族中學2024屆數學高二上期末教學質量檢測試題含解析_第1頁
內蒙古錦山蒙古族中學2024屆數學高二上期末教學質量檢測試題含解析_第2頁
內蒙古錦山蒙古族中學2024屆數學高二上期末教學質量檢測試題含解析_第3頁
內蒙古錦山蒙古族中學2024屆數學高二上期末教學質量檢測試題含解析_第4頁
內蒙古錦山蒙古族中學2024屆數學高二上期末教學質量檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

內蒙古錦山蒙古族中學2024屆數學高二上期末教學質量檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.數學美的表現形式不同于自然美或藝術美那樣直觀,它蘊藏于特有的抽象概念,公式符號,推理論證,思維方法等之中,揭示了規律性,是一種科學的真實美.平面直角坐標系中,曲線:就是一條形狀優美的曲線,對于此曲線,給出如下結論:①曲線圍成的圖形的面積是;②曲線上的任意兩點間的距離不超過;③若是曲線上任意一點,則的最小值是其中正確結論的個數為()A. B.C. D.2.傾斜角為45°,在軸上的截距是的直線方程為()A. B.C. D.3.三個實數構成一個等比數列,則圓錐曲線的離心率為()A. B.C.或 D.或4.過點且與直線平行的直線方程是()A. B.C. D.5.已知等比數列各項均為正數,且,,成等差數列,則()A. B.C. D.6.已知橢圓的左、右焦點分別為,為軸上一點,為正三角形,若,的中點恰好在橢圓上,則橢圓的離心率是()A. B.C. D.7.拋物線的準線方程是A. B.C. D.8.已知為坐標原點,點的坐標為,點的坐標滿足,則的最小值為()A B.C. D.49.在直三棱柱中,,M,N分別是,的中點,,則AN與BM所成角的余弦值為()A. B.C. D.10.圍棋起源于中國,據先秦典籍世本記載:“堯造圍棋,丹朱善之”,至今已有四千多年歷史.圍棋不僅能抒發意境、陶冶情操、修身養性、生慧增智,而且還與天象易理、兵法策略、治國安邦等相關聯,蘊含著中華文化的豐富內涵.在某次國際圍棋比賽中,規定甲與乙對陣,丙與丁對陣,兩場比賽的勝者爭奪冠軍,根據以往戰績,他們之間相互獲勝的概率如下:甲乙丙丁甲獲勝概率乙獲勝概率丙獲勝概率丁獲勝概率則甲最終獲得冠軍的概率是()A.0.165 B.0.24C.0.275 D.0.3611.若,,且,則()A. B.C. D.12.在四棱錐中,底面是正方形,為的中點,若,則()A B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,點在軸上,且,則點的坐標為____________.14.已知是雙曲線的左、右焦點,若為雙曲線上一點,且,則__________.15.已知空間向量,,,若,,共面,則實數___________.16.直線與兩坐標軸相交于,兩點,則線段的垂直平分線的方程為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓與(1)過點作直線與圓相切,求的方程;(2)若圓與圓相交于、兩點,求的長18.(12分)如圖,在三棱錐中,平面,,,為的中點.(1)證明:平面;(2)求平面與平面所成二面角的正弦值.19.(12分)已知函數.(I)若曲線在點處的切線方程為,求的值;(II)若,求的單調區間.20.(12分)已知函數.(1)求函數f(x)的單調區間;(2)若f(x)≥0對定義域內的任意x恒成立,求實數a的取值范圍.21.(12分)已知橢圓E:的離心率,且右焦點到直線的距離為.(1)求橢圓的標準方程;(2)四邊形的頂點在橢圓上,且對角線,過原點,若,證明:四邊形的面積為定值.22.(10分)已知圓:,直線:.圓與圓關于直線對稱(1)求圓的方程;(2)點是圓上的動點,過點作圓的切線,切點分別為、.求四邊形面積的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】結合已知條件寫出曲線的解析式,進而作出圖像,對于①,通過圖像可知,所求面積為四個半圓和一個正方形面積之和,結合數據求解即可;對于②,根據圖像求出曲線上的任意兩點間的距離的最大值即可判斷;對于③,將問題轉化為點到直線的距離,然后利用圓上一點到直線的距離的最小值為圓心到直線的距離減去半徑即可求解.【詳解】當且時,曲線的方程可化為:;當且時,曲線的方程可化為:;當且時,曲線的方程可化為:;當且時,曲線的方程可化為:,曲線的圖像如下圖所示:由上圖可知,曲線所圍成的面積為四個半圓的面積與邊長為的正方形的面積之和,從而曲線所圍成的面積,故①正確;由曲線的圖像可知,曲線上的任意兩點間的距離的最大值為兩個半徑與正方形的邊長之和,即,故②錯誤;因為到直線的距離為,所以,當最小時,易知在曲線的第一象限內的圖像上,因為曲線的第一象限內的圖像是圓心為,半徑為的半圓,所以圓心到的距離,從而,即,故③正確,故選:C.2、B【解析】先由傾斜角為45°,可得其斜率為1,再由軸上的截距是,可求出直線方程【詳解】解:因為直線的傾斜角為45°,所以直線的斜率為,因為直線在軸上的截距是,所以所求的直線方程為,即,故選:B3、D【解析】根據三個實數構成一個等比數列,解得,然后分,討論求解.【詳解】因為三個實數構成一個等比數列,所以,解得,當時,方程表示焦點在x軸上的橢圓,所以,所以,當時,方程表示焦點在y軸上的雙曲線,所以,所以,故選:D4、A【解析】由題意設直線方程為,根據點在直線上求參數即可得方程.【詳解】由題設,令直線方程為,所以,可得.所以直線方程為.故選:A.5、A【解析】結合等差數列的性質求得公比,然后由等比數列的性質得結論【詳解】設的公比為,因為,,成等差數列,所以,即,,或(舍去,因為數列各項為正)所以故選:A6、A【解析】根據題意得,取線段的中點,則根據題意得,,根據橢圓的定義可知,然后解出離心率的值.【詳解】因為為正三角形,所以,取線段的中點,連結,則,所以,得,所以橢圓的離心率.故選:A.【點睛】求解離心率及其范圍的問題時,解題的關鍵在于畫出圖形,根據題目中的幾何條件列出關于,,的齊次式,然后得到關于離心率的方程或不等式求解7、C【解析】根據拋物線的概念,可得準線方程為8、B【解析】由數量積的坐標運算求得,令,化為直線方程的斜截式,數形結合得到最優解,把最優解的坐標代入目標函數得答案【詳解】解:根據題意可得,、,所以,令,由約束條件作出可行域如下圖所示,由得,即,由,得,由圖可知,當直線過時,直線在軸上的截距最小,有最小值為,即,所以故選:B9、D【解析】構建空間直角坐標系,根據已知條件求AN與BM對應的方向向量,應用空間向量夾角的坐標表示求AN與BM所成角的余弦值.【詳解】建立如下圖所示的空間直角坐標系,∴,,,,∴,,∴,所以AN與BM所成角的余弦值為.故選:D10、B【解析】先求出甲第一輪勝出的概率,再求出甲第二輪勝出的概率,即可得出結果.【詳解】甲最終獲得冠軍的概率,故選:B.11、A【解析】由于對數函數的存在,故需要對進行放縮,結合(需證明),可放縮為,利用等號成立可求出,進而得解.【詳解】令,,故在上單調遞減,在上單調遞增,,故,即,當且僅當,等號成立.所以,當且僅當時,等號成立,又,所以,即,所以,又,所以,,故故選:A12、C【解析】由為的中點,根據向量的運算法則,可得,即可求解.【詳解】由底面是正方形,E為的中點,且,根據向量的運算法則,可得.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設P(0,0,z),由|PA|=|PB|,得1+4+(z?1)2=4+4+(z?2)2,解得z=3,故點P的坐標為(0,0,3).14、17【解析】根據雙曲線的定義求解【詳解】由雙曲線方程知,,,又.,所以(1舍去)故答案為:1715、1【解析】根據向量共面,可設,先求解出的值,則的值可求.【詳解】因為,,共面且,不共線,所以可設,所以,所以,所以,所以,故答案為:1.16、【解析】由直線的方程求出直線的斜率以及,兩點坐標,進而可得線段的垂直平分線的斜率以及線段的中點坐標,利用點斜式即可求解.【詳解】由直線可得,所以直線的斜率為,所以線段的垂直平分線的斜率為,令可得;令可得;即,,所以線段的中點坐標為,所以線段的垂直平分線的方程為,整理得.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)或(2)【解析】(1)根據已知可得圓心與半徑,再利用幾何法可得切線方程;(2)聯立兩圓方程可得公共弦方程,進而可得弦長.【小問1詳解】解:圓的方程可化為:,即:圓的圓心為,半徑為若直線的斜率不存在,方程為:,與圓相切,滿足條件若直線的斜率存在,設斜率為,方程為:,即:由與圓相切可得:,解得:所以的方程為:,即:綜上可得的方程為:或【小問2詳解】聯立兩圓方程得:,消去二次項得所在直線的方程:,圓的圓心到的距離,所以.18、(1)證明見解析(2)【解析】(1)根據勾股定理先證明,然后證明,進而通過線面垂直的判定定理證明問題;(2)建立空間直角坐標系,進而求出兩個平面的法向量,然后通過空間向量的夾角公式求得答案.【小問1詳解】∵,,∴,∴,∵平面,平面,∴,∵,,,∴平面.【小問2詳解】以點為坐標原點,向量,的方向分別為,軸的正方向建立空間直角坐標系,則,,,,,設平面的法向量為,由,,有取,可得平面的一個法向量為.設平面的一個法向量為,由,,有取,可得平面的一個法向量為,所以,故平面與平面的夾角的正弦值為.19、(Ⅰ)(Ⅱ)在區間上單調遞增,在區間上單調遞減【解析】(Ⅰ)求出函數的導函數,根據題意可得得到關于的方程組,解得;(Ⅱ)求出函數的導函數,解得函數的單調遞增區間,解得函數的單調遞減區間.【詳解】解:(Ⅰ)因為函數在點處的切線方程為解得(Ⅱ)令,得或.因為,所以時,;時,.故在區間上單調遞增,在區間上單調遞減【點睛】本題考查導數的幾何意義,利用導數研究函數的單調性,屬于基礎題.20、(1)答案見解析(2)【解析】(1)求導數,然后對進行分類討論,利用導數的正負,可得函數的單調區間;(2)利用(1)中函數的單調性,求得函數在處取得最小值,即可求實數的取值范圍.【小問1詳解】解:求導可得①時,令可得,由于知;令,得∴函數在上單調遞減,在上單調遞增;②時,令可得;令,得或,由于知或;∴函數在上單調遞減,在上單調遞增;③時,,函數在上單調遞增;④時,令可得;令,得或,由于知或∴函數在上單調遞減,在上單調遞增;【小問2詳解】由(1)時,,(不符合,舍去)當時,在上單調遞減,在上單調遞增,故函數在處取得最小值,所以函數對定義域內的任意x恒成立時,只需要即可∴.綜上,.21、(1);(2)證明見解析.【解析】(1)根據已知條件列出關于a、b、c的方程組求解即可;(2)設,代入,利用韋達定理,通過,結合,轉化求解即可【小問1詳解】【小問2詳解】設,設,代入,得,∵,∴,,∵,得,即,解得,∵,且,又,,整理得,∴為定值22、(1)(2)【解析】(1)圓關于直線對稱,半徑不變,只需求出圓心對稱的坐標即可.(2)將四邊形面積分成兩個全等的直角三角形,利用直角三角形的性質,一條直角邊不變時,斜邊與另外一條直角邊的大小成正相關,從而得到面積的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論