




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江西省贛州市會昌縣2023-2024學年高二數學第一學期期末綜合測試模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.拋物線的準線方程為()A. B.C. D.2.設等差數列的前n項和為.若,則()A.19 B.21C.23 D.383.雙曲線的漸近線方程為A. B.C. D.4.雙曲線的焦距是()A.4 B.C.8 D.5.某地區高中分三類,A類學校共有學生2000人,B類學校共有學生3000人,C類學校共有學生4000人,若采取分層抽樣的方法抽取900人,則A類學校中的學生甲被抽到的概率()A. B.C. D.6.橢圓:與雙曲線:的離心率之積為2,則雙曲線的漸近線方程為()A. B.C. D.7.若在1和16中間插入3個數,使這5個數成等比數列,則公比為()A. B.2C. D.48.2021年小林大學畢業后,9月1日開始工作,他決定給自己開一張儲蓄銀行卡,每月的10號存錢至該銀行卡(假設當天存錢次日到賬).2021年9月10日他給卡上存入1元,以后每月存的錢數比上個月多一倍,則他這張銀行卡賬上存錢總額(不含銀行利息)首次達到1萬元的時間為()A.2022年12月11日 B.2022年11月11日C.2022年10月11日 D.2022年9月11日9.內角、、的對邊分別為、、,若,,,則()A. B.C. D.10.設實數x,y滿足,則目標函數的最大值是()A. B.C.16 D.3211.設正方體的棱長為,則點到平面的距離是()A. B.C. D.12.三個實數構成一個等比數列,則圓錐曲線的離心率為()A. B.C.或 D.或二、填空題:本題共4小題,每小題5分,共20分。13.已知曲線在點處的切線的斜率為,則______14.一條光線經過點射到直線上,被反射后經過點,則入射光線所在直線的方程為___________.15.已知橢圓的左、右焦點分別為,若橢圓上的點P滿足軸,,則該橢圓的離心率為___________16.長方體中,,,已知點H,A,三點共線,且,則點H到平面ABCD的距離為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的右頂點為,上頂點為.離心率為,.(1)求橢圓的標準方程;(2)若,是橢圓上異于長軸端點的兩點(斜率不為0),已知直線,且,垂足為,垂足為,若,且的面積是面積的5倍,求面積的最大值.18.(12分)為慶祝中國共產黨成立100周年,某校舉行了黨史知識競賽,在必答題環節,甲、乙兩位選手分別從3道選擇題(1)甲至少抽到1道填空題(2)甲答對的題數比乙多的概率.19.(12分)四棱錐中,平面,四邊形為平行四邊形,(1)若為中點,求證平面;(2)若,求面與面的夾角的余弦值.20.(12分)已知動圓過點且動圓內切于定圓:記動圓圓心的軌跡為曲線.(1)求曲線的方程;(2)若、是曲線上兩點,點滿足求直線的方程.21.(12分)已知函數(…是自然對數的底數).(1)求的單調區間;(2)求函數的零點的個數.22.(10分)已知二次函數,令,解得.(1)求二次函數的解析式;(2)當關于的不等式恒成立時,求實數的范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】將拋物線的方程化成標準形式,即可得到答案;【詳解】拋物線的方程化成標準形式,準線方程為,故選:A.2、A【解析】由已知及等差數列的通項公式得到公差d,再利用前n項和公式計算即可.【詳解】設等差數列的公差為d,由已知,得,解得,所以.故選:A3、A【解析】根據雙曲線的漸近線方程知,,故選A.4、C【解析】根據,先求半焦距,再求焦距即可.【詳解】解:由題意可得,,∴,故選:C【點睛】考查求雙曲線的焦距,基礎題.5、D【解析】利用抽樣的性質求解【詳解】所有學生數為,所以所求概率為.故選:D6、C【解析】先求出橢圓的離心率,再由題意得出雙曲線的離心率,根據離心率即可求出漸近線斜率得解.【詳解】橢圓:的離心率為,則,依題意,雙曲線;的離心率為,而,于是得,解得:,所以雙曲線的漸近線方程為故選:C7、A【解析】根據等比數列的通項得:,從而可求出.【詳解】解:成等比數列,∴根據等比數列的通項得:,,故選:A.8、C【解析】分析可得每月所存錢數依次成首項為1,公比為2的等比數列,其前n項和為,分析首次達到1萬元的值,即得解【詳解】依題意可知,小林從第一個月開始,每月所存錢數依次成首項為1,公比為2的等比數列,其前n項和為.因為為增函數,且,所以第14個月的10號存完錢后,他這張銀行卡賬上存錢總額首次達到1萬元,即2022年10月11日他這張銀行卡賬上存錢總額首次達到1萬元.故選:C9、C【解析】利用正弦定理可求得邊的長.【詳解】由正弦定理得.故選:C.10、C【解析】求的最大值即求的最大值,根據約束條件畫出可行域,將目標函數看成直線,直線經過可行域內的點,將目標與直線的截距建立聯系,然后得到何時目標值取得要求的最值,進而求得的最大值,最后求出的最大值.【詳解】要求的最大值即求的最大值.根據實數,滿足的條件作出可行域,如圖.將目標函數化為.則表示直線在軸上的截距的相反數.要求的最大值,即求直線在軸上的截距最小值.如圖當直線過點時,在軸上的截距最小值.由,解得所以的最大值為,則的最大值為16.故選:C.11、D【解析】建立空間直角坐標系,根據空間向量所學點到面的距離公式求解即可.【詳解】建立如下圖所示空間直角坐標系,以為坐標原點,所在直線為軸,所在直線為軸,所在直線為軸.因為正方體的邊長為4,所以,,,,,所以,,,設平面的法向量,所以,,即,設,所以,,即,設點到平面的距離為,所以,故選:D.12、D【解析】根據三個實數構成一個等比數列,解得,然后分,討論求解.【詳解】因為三個實數構成一個等比數列,所以,解得,當時,方程表示焦點在x軸上的橢圓,所以,所以,當時,方程表示焦點在y軸上的雙曲線,所以,所以,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】對求導,根據題設有且,即可得目標式的值.【詳解】由題設,且定義域為,則,所以,整理得,又,所以,兩邊取對數有,得:,即.故答案為:.14、【解析】先求點關于直線的對稱點,連接,則直線即為所求.【詳解】設點關于直線的對稱點為,則,解得,所以,又點,所以,直線的方程為:,由圖可知,直線即為入射光線,所以化簡得入射光線所在直線的方程:.故答案為:.15、【解析】由題意分析為直角三角形,得到關于a、c的齊次式,即可求出離心率.【詳解】設,則.由橢圓的定義可知:,所以.所以因軸,所以為直角三角形,由勾股定理得:,即,即,所以離心率.故答案為:16、【解析】在長方體中,以點A為原點建立空間直角坐標系,利用已知條件求出點H的坐標作答.【詳解】在長方體中,以點A為原點建立如圖所示的空間直角坐標系,則,,因點H,A,三點共線,令,點,則,又,則,解得,所以點到平面ABCD的距離為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)面積的最大值為【解析】(1)由離心率為,,得,解得,,,進而可得答案(2)設直線的方程為,,,,,聯立直線與橢圓的方程,結合韋達定理可得,,由弦長公式可得,點到直線的距離,則,,由的面積是面積的5倍,解得,再計算的最大值,即可【小問1詳解】解:因為離心率為,,所以,解得,,,所以【小問2詳解】解:設直線的方程為,,,,,聯立,得,所以,,所以,點到直線的距離,所以,,因為的面積是面積的5倍,所以所以或,又因為,是橢圓上異于長軸端點的兩點,所以,所以,令,所以,因為在上單調遞增,所以,(當時,取等號),所以面積的最大值為.18、(1);(2).【解析】(1)把3道選擇題(2)設,分別表示甲答對1道題,2道題的事件,,分別表示乙答對0道題,1道題的事件,分別求出它們的概率,甲答對的題數比乙多這個事件是,然后由相互獨立的事件和互斥事件的概率公式計算【詳解】解:(1)記3道選擇題則試驗的樣本空間,.共有10個樣本點,且每個樣本點是等可能發生的,所以這是一個古典概型.記事件A=“甲至少抽到1道填空題,.所以,,.所以,.因此,甲至少抽到1道填空題(2)設,分別表示甲答對1道題,2道題的事件,分別表示乙答對0道題,1道題的事件,根據獨立性假定,得,.,.記事件B=“甲答對的題數比乙多”,則,且,,兩兩互斥,與,與,與分別相互獨立,所以..因此,甲答對的題數比乙多的概率為.19、(1)證明見解析(2)【解析】(1)先證,,再證平面即可;(2)建立空間直角坐標系,先求出面與面的法向量,再計算夾角余弦值即可.小問1詳解】取中點,連接,則四邊形為平行四邊形,,為直角三角形,且.又平面,平面,.又,平面.【小問2詳解】,為等邊三角形,取中點,連接,則,以為坐標原點,分別以為軸建立空間坐標系,如圖令,則,設面的法向量為,則由得取,則設面的法向量為,則由得取,則設面與面的夾角為,則所以面與面的夾角的余弦值為.20、(1);(2).【解析】(1)根據兩圓內切,以及圓過定點列式求軌跡方程;(2)利用重心坐標公式可知,,再設直線的方程為與橢圓方程聯立,利用根與系數的關系求解直線方程.【詳解】(1)由已知可得,兩式相加可得則點的軌跡是以、為焦點,長軸長為的橢圓,則因此曲線的方程是(2)因為,則點是的重心,易得直線的斜率存在,設直線的方程為,聯立消得:且①②由①②解得則直線的方程為即【點睛】本題考查直線與橢圓的問題關系,本題的關鍵是根據求得,.21、(1)當時,的單調遞增區間為,無單調遞減區間;當時,的單調遞減區間為,單調遞增區間為;(2)時函數沒有零點;或時函數有且只有一個零點;時,函數有兩個零點.【解析】(1)先對函數求導,然后分和兩種情況判斷導函數正負,求其單調區間;(2)由,得,構造函數,然后利用導數求出其單調區間和極值,畫出此函數的圖像,再判斷圖像與直線的交點情況,從而可得答案【詳解】(1)因為,所以,當時,恒成立,所以的單調遞增區間為,無單調遞減區間;當時,令,得;令,得,所以的單調遞減區間為,單調遞增區間為.(2)顯然0不是函數的零點,由,得.令,則.或時,,時,,所以在和上都是減函數,在上是增函數,時取極小值,又當時,.所以時,關于的方程無解,或時關于的方程只有一個解,時,關于的方程有兩個不同解.因此,時函數沒有零點,或時函數有且只有一個零點,時,函數有兩個零點.【點睛】關鍵點點睛:此題考查導數的應用,考查利用導數求函數的單調區間,考查利用導數判斷函數的零點,解題的關鍵是由,得,構造函數,然后利用導數求出其單調區間和極值,畫出此函數的圖像,再判斷圖像與直線的交點情況,考查數形結合的思想,屬于中檔題22、(1);(2).【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 機電工程發展的學術研究與試題及答案
- 西方國家政治家的人格特征研究試題及答案
- 機電工程考試成功經驗2025年試題及答案
- 軟件開發生命周期管理及試題與答案
- 網絡工程師考試準備技巧與試題及答案
- 西方政治制度與教育科技融合的研究試題及答案
- 機電工程知識傳承與試題及答案總結
- 網絡工程師個案研究試題及答案
- 常見網絡協議解析試題及答案
- 網絡工程師職業發展的外部環境分析試題及答案
- 2023年四川省水電投資經營集團普格電力有限公司招聘筆試題庫含答案解析
- (完整版)高級法學英語課文翻譯
- 無人機項目融資商業計劃書
- 食品營養學(暨南大學)智慧樹知到答案章節測試2023年
- GA 1810-2022城鎮燃氣系統反恐怖防范要求
- GB/T 2518-2008連續熱鍍鋅鋼板及鋼帶
- 商戶撤場退鋪驗收單
- 部編版小學道德與法治三年級下冊期末質量檢測試卷【含答案】5套
- 斷親協議書范本
- 五年級語文下冊第八單元【教材解讀】課件
- 外科圍手術期患者心理問題原因分析及護理干預
評論
0/150
提交評論