




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河南省安陽第三十五中學2023-2024學年高二上數學期末統考模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在等比數列{an}中,a1=8,a4=64,則a3等于()A.16 B.16或-16C.32 D.32或-322.王昌齡是盛唐著名的邊塞詩人,被譽為“七絕圣手”,其《從軍行》傳誦至今“青海長云暗雪山,孤城遙望玉門關.黃沙百戰穿金甲,不破樓蘭終不還”,由此推斷,最后一句“返回家鄉”是“攻破樓蘭”的()A.必要條件 B.充分條件C.充要條件 D.既不充分也不必要3.雙曲線:(,)的左、右焦點分別為、,點在雙曲線上,,,則的離心率為()A. B.2C. D.4.已知雙曲線的離心率,點是拋物線上的一動點,到雙曲線的上焦點的距離與到直線的距離之和的最小值為,則該雙曲線的方程為A. B.C. D.5.已知實數,滿足則的最大值為()A.-1 B.0C.1 D.26.設,為雙曲線的上,下兩個焦點,過的直線l交該雙曲線的下支于A,B兩點,且滿足,,則雙曲線的離心率為()A. B.C. D.7.連擲一枚均勻的骰子兩次,所得向上的點數分別為m,n,記,則下列說法正確的是()A.事件“”的概率為 B.事件“t是奇數”與“”互為對立事件C.事件“”與“”互為互斥事件 D.事件“且”的概率為8.在等比數列{an}中,a3,a15是方程x2+6x+2=0的根,則的值為()A. B.C. D.或9.在空間直角坐標系中,方程所表示的圖形是()A圓 B.橢圓C.雙曲線 D.球10.設正實數,滿足(其中為正常數),若的最大值為3,則()A.3 B.C. D.11.已知是拋物線上的點,F是拋物線C的焦點,若,則()A1011 B.2020C.2021 D.202212.在下列四條拋物線中,焦點到準線的距離為1的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知滿足的雙曲線(a,b>0,c為半焦距)為黃金雙曲線,則黃金雙曲線的離心率為______14.已知函數.(1)當時,求曲線在點處的切線方程;(2)求的單調區間;15.已知函數在上單調遞減,則的取值范圍是______.16.已知數列滿足,,則_____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知雙曲線的左、右焦點分別為,過作斜率為的弦.求:(1)弦的長;(2)△的周長.18.(12分)已知拋物線C:,經過的直線與拋物線C交于A,B兩點(1)求的值(其中為坐標原點);(2)設F為拋物線C的焦點,直線為拋物線C的準線,直線是拋物線C的通徑所在的直線,過C上一點P()()作直線與拋物線相切,若直線與直線相交于點M,與直線相交于點N,證明:點P在拋物線C上移動時,恒為定值,并求出此定值19.(12分)已知圓,點,點是圓上任意一點,線段的垂直平分線交直線于點,點的軌跡記為曲線.(1)求曲線的方程;(2)已知曲線上一點,動圓,且點在圓外,過點作圓的兩條切線分別交曲線于點,.(i)求證:直線的斜率為定值;(ii)若直線與交于點,且時,求直線的方程.20.(12分)已知等差數列}的公差為整數,為其前n項和,,(1)求{}的通項公式:(2)設,數列的前n項和為,求21.(12分)已知拋物線C:上有一動點,,過點P作拋物線C的切線交y軸于點Q(1)判斷線段PQ的垂直平分線是否過定點?若過,求出定點坐標;若不過,請說明理由;(2)過點P作垂線交拋物線C于另一點M,若切線的斜率為k,設的面積為S,求的最小值22.(10分)如圖,在四棱錐中,底面為矩形,平面平面,.(1)證明:平面平面;(2)若,為棱的中點,,,求二面角的余弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】首先根據a4=a1q3,求得q=2,再由a3=即可得解.【詳解】由a4=a1q3,得q3=8,即q=2,所以a3==32.故選:C2、B【解析】由題意,“不破樓蘭”可以推出“不還”,但是反過來“不還”的原因有多種,按照充分條件、必要條件的定義即可判斷【詳解】由題意,“不破樓蘭終不還”即“不破樓蘭”是“不還”的充分條件,即“不破樓蘭”可以推出“不還”,但是反過來“不還”的原因有多種,比如戰死沙場;即如果已知“還”,一定是已經“破樓蘭”,所以“還”是“破樓蘭”的充分條件故選:B3、C【解析】根據雙曲線定義、余弦定理,結合題意,求得關系,即可求得離心率.【詳解】根據題意,作圖如下:不妨設,則,,①;在△中,由余弦定理可得:,代值得:,②;聯立①②兩式可得:;在△和△中,由,可得:,整理得:,③;聯立②③可得:,又,故可得:,則,則,故離心率為.故選:C.4、B【解析】先根據離心率得,再根據拋物線定義得最小值為(為拋物線焦點),解得,即得結果.【詳解】因為雙曲線的離心率,所以,設為拋物線焦點,則,拋物線準線方程為,因此到雙曲線的上焦點的距離與到直線的距離之和等于,因為,所以,即,即雙曲線的方程為,選B.【點睛】本題考查雙曲線方程、離心率以及拋物線定義,考查基本分析求解能力,屬中檔題.5、D【解析】由約束條件作出可行域,化目標函數為直線方程的斜截式,數形結合得到最優解,把最優解的坐標代入目標函數,即可得到結果【詳解】由約束條件畫出可行域如圖,化目標函數為,由圖可知當直線過點時,直線在軸上的截距最小,取得最大值2.故選:D6、A【解析】設,表示出,由勾股定理列式計算得,然后在,再由勾股定理列式,計算離心率.【詳解】由題意得,,且,如圖所示,設,由雙曲線的定義可得,,因為,所以,得,所以,在中,,即.故選:A【點睛】雙曲線的離心率是雙曲線最重要的幾何性質,求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:求出,代入公式;②只需要根據一個條件得到關于的齊次式,結合轉化為的齊次式,然后等式(不等式)兩邊分別除以或轉化為關于的方程(不等式),解方程(不等式)即可得(的取值范圍)7、D【解析】計算出事件“t=12”的概率可判斷A;根據對立事件的概念,可判斷B;根據互斥事件的概念,可判斷C;計算出事件“t>8且mn<32”的概率可判斷D;【詳解】連擲一枚均勻的骰子兩次,所得向上的點數分別為m,n,則共有個基本事件,記t=m+n,則事件“t=12”必須兩次都擲出6點,則事件“t=12”的概率為,故A錯誤;事件“t是奇數”與“m=n”為互斥不對立事件,如事件m=3,n=5,故B錯誤;事件“t=2”與“t≠3”不是互斥事件,故C錯誤;事件“t>8且mn<32”有共9個基本事件,故事件“t>8且mn<32”的概率為,故D正確;故選:D8、B【解析】由韋達定理得a3a15=2,由等比數列通項公式性質得:a92=a3a15=a2a16=2,由此求出答案【詳解】解:∵在等比數列{an}中,a3,a15是方程x2-6x+2=0的根,∴a3a15=2>0,a3+a15=-6<0∴a2a16=a3a15=2,a92=a3a15=2,∴a9=,∴,故選B【點睛】本題考查等比數列中兩項積與另一項的比值的求法,是基礎題,解題時要認真審題,注意等比數列的性質的合理運用9、D【解析】方程表示空間中的點到坐標原點的距離為2,從而可知圖形的形狀【詳解】由,得,表示空間中的點到坐標原點的距離為2,所以方程所表示的圖形是以原點為球心,2為半徑的球,故選:D10、D【解析】由于,,為正數,且,所以利用基本不等式可求出結果【詳解】解:因為正實數,滿足(其中為正常數),所以,則,所以,所以故選:D.11、C【解析】結合向量坐標運算以及拋物線的定義求得正確答案.【詳解】設,因為是拋物線上的點,F是拋物線C的焦點,所以,準線為:,因此,所以,即,由拋物線的定義可得,所以故選:C12、D【解析】由題意可知,然后分析判斷即可【詳解】由題意知,即可滿足題意,故A,B,C錯誤,D正確.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】根據題設及雙曲線離心率公式可得,結合雙曲線離心率的性質即可求離心率.【詳解】由題設,,整理得:,所以,而,故.故答案為:.14、(1)(2)詳見解析【解析】(1)分別求得和,從而得到切線方程;(2)求導后,令求得兩根,分別在、和三種情況下根據導函數的正負得到函數的單調區間.【詳解】(1),,,,又,在處的切線方程為.(2),令,解得:,.①當時,若和時,;若時,;的單調遞增區間為,;單調遞減區間為;②當時,在上恒成立,的單調遞增區間為,無單調遞減區間;③當時,若和時,;若時,;的單調遞增區間為,;單調遞減區間為;綜上所述:當時,的單調遞增區間為,;單調遞減區間為;當時,的單調遞增區間為,無單調遞減區間;當時,的單調遞增區間為,;單調遞減區間為.【點睛】本題考查利用導數的幾何意義求解曲線在某一點處的切線方程、利用導數討論含參數函數的單調區間的問題,屬于常考題型.15、【解析】先求導,求出函數的單調遞減區間,由即可求解.【詳解】,令,得,即的單調遞減區間是,又在上單調遞減,可得,即.故答案為:.16、【解析】由題設可得,應用累加法有,結合已知即可求.【詳解】由題設,,所以,又,所以.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)聯立直線方程與雙曲線方程,求得交點的坐標,再用兩點之間的距離公式即可求得;(2)根據(1)中所求,利用兩點之間的距離公式,即可求得三角形周長.【小問1詳解】設點的坐標分別為,由題意知雙曲線的左、右焦點坐標分別為、,直線的方程,與聯立得,解得,代入的方程為分別解得.所以.【小問2詳解】由(1)知,,,所以△的周長為.18、(1)(2)證明見解析,定值為【解析】(1)設出直線的方程并與拋物線方程聯立,結合根與系數關系求得.(2)求得過點的拋物線的切線方程,由此求得兩點的坐標,通過化簡來證得為定值,并求得定值.【小問1詳解】依題意可知直線的斜率不為零,設直線的方程為,設,,消去并化簡得,所以,所以.小問2詳解】拋物線方程為,焦點坐標為,準線,通徑所在直線,在拋物線上,且,所以過點的拋物線的切線的斜率存在且不為零,設過點的切線方程為,由消去并化簡得,,將代入上式并化簡得,解得,所以切線方程為,令得,令得,,將代入上式并化簡得,所以為定值,且定值為.19、(1)(2)(i)答案見解析(ii)或【解析】(1)通過幾何關系可知,且,由此可知點的軌跡是以點、為焦點,且實軸長為的雙曲線,通過雙曲線的定義即可求解;(2)(i)設點,,直線的方程為,將直線方程與雙曲線方程聯立利用韋達定理及求出,即得到直線的斜率為定值;(ii)由(i)可知,由已知可得,聯立方程即可求出,的值,代入即可求出的值,即可得到直線方程.【小問1詳解】由題意可知,∵,且,∴根據雙曲線的定義可知,點的軌跡是以點、為焦點,且實軸長為的雙曲線,即,,,則點的軌跡方程為;【小問2詳解】(i)設點,,直線的方程為,聯立得,其中,且,,,∵曲線上一點,∴,由已知條件得直線和直線關于對稱,則,即,整理得,,,,即,則或,當,直線方程為,此直線過定點,應舍去,故直線的斜率為定值.(ii)由(i)可知,由已知得,即,當時,,,即,,,解得或,但是當時,,故應舍去,當時,直線方程為,當時,,即,,,解得(舍去)或,當時,直線方程為,故直線的方程為或.20、(1)(2)【解析】(1)根據題意利用等差數列的性質列出方程,即可解得答案;(2)根據(1)的結果,求出的表達式,利用裂項求和的方法求得答案.小問1詳解】設等差數列{}的公差為d,則,整理可得:,∵d是整數,解得,從而,所以數列{}的通項公式為:;【小問2詳解】由(1)知,,所以21、(1)線段的垂直平分線過定點(2)【解析】(1)設切線的方程為,并與拋物線方程聯立,利用判別式求得點坐標,進而求得點坐標,從而求得線段的垂直平分線的方程,進而求得定點坐標.(2)結合弦長公式求得的面積,利用基本不等式求得的最小值.【小問1詳解】依題意可知切線的斜率存在,且斜率大于.設直線PQ的方程為,.由消去并化簡得,由得,,則,解得,所以,在中,令得,所以,PQ中點為,所以線段PQ的中垂線方程為,即,所以線段的垂直平分線過定點.【小問2詳解】由(1)可知,直線PM的方程為,即.由消去并化簡得:,所以,而,所以得,,,.所以的面積,所以.當且僅當時等號成立.所以的最小值為.22、(1)見解析;(2)【解析】分析:(1)由四邊形為矩形,可得,再由已知結合面面垂直的性質可得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 蒸汽管網培訓課件
- 寫字坐姿培訓課件圖片
- 中職新生入學紀律教育
- 中國制造課件-教科版
- 培訓學習匯報
- 高齡心房顫動患者抗凝治療中國專家共識解讀 2
- 扒房知識培訓
- 中國全國各地地區課件
- 中國體育精神課件
- 中國傳統飾品繪畫課件
- 2025年上海市中考語文試卷真題(含答案及解析)
- 護理急診急救培訓課件
- 2025年衛生系統招聘考試(公共基礎知識)新版真題卷(附詳細解析)
- 2024年司法局司法輔助崗招聘考試筆試試題(含答案)
- 2025邯鄲武安市選聘農村黨務(村務)工作者180名筆試備考試題及答案詳解一套
- 重慶市普通高中2025屆高一下化學期末學業質量監測試題含解析
- 2025年人力資源管理師考試試卷及答案
- 北方華創招聘筆試題庫2025
- 2025鄭州航空工業管理學院輔導員考試試題及答案
- 浙江省嘉興市2023-2024學年高一下學期6月期末考試英語試題(含答案)
- 多模態數據融合的智能告警機制-洞察闡釋
評論
0/150
提交評論