海南省等八校2023-2024學年高二上數學期末經典模擬試題含解析_第1頁
海南省等八校2023-2024學年高二上數學期末經典模擬試題含解析_第2頁
海南省等八校2023-2024學年高二上數學期末經典模擬試題含解析_第3頁
海南省等八校2023-2024學年高二上數學期末經典模擬試題含解析_第4頁
海南省等八校2023-2024學年高二上數學期末經典模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

海南省等八校2023-2024學年高二上數學期末經典模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數的極大值點為()A. B.C. D.不存在2.已知、為非零實數,若且,則下列不等式成立的是()A. B.C. D.3.雙曲線的光學性質如下:如圖1,從雙曲線右焦點發出的光線經雙曲線鏡面反射,反射光線的反向延長線經過左焦點.我國首先研制成功的“雙曲線新聞燈”,就是利用了雙曲線的這個光學性質.某“雙曲線燈”的軸截面是雙曲線一部分,如圖2,其方程為,分別為其左、右焦點,若從右焦點發出的光線經雙曲線上的點A和點B反射后(,A,B在同一直線上),滿足,則該雙曲線的離心率的平方為()A. B.C. D.4.已知公比不為1的等比數列,其前n項和為,,則()A.2 B.4C.5 D.255.已知拋物線的焦點為F,過F作斜率為2的直線l與拋物線交于A,B兩點,若弦的中點到拋物線準線的距離為3,則拋物線的方程為()A. B.C. D.6.命題,,則是()A., B.,C., D.,7.在中,已知角A,B,C所對邊為a,b,c,,,,則()A. B.C. D.18.數列的通項公式是()A. B.C. D.9.變量與的數據如表所示,其中缺少了一個數值,已知關于的線性回歸方程為,則缺少的數值為()22232425262324▲2628A.24 B.25C.25.5 D.2610.阿基米德是古希臘著名的數學家、物理學家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積,已知在平面直角坐標系中,橢圓的面積為,兩焦點與短軸的一個端點構成等邊三角形,則橢圓的標準方程是()A. B.C. D.11.阿基米德曾說過:“給我一個支點,我就能撬動地球”.他在做數學研究時,有一個有趣的問題:一個邊長為2的正方形內部挖了一個內切圓,現在以該內切圓的圓心且平行于正方形的一邊的直線為軸旋轉一周形成幾何體,則該旋轉體的體積為()A. B.C. D.12.過點與直線平行的直線的方程是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某廠將從64名員工中用系統抽樣的方法抽取4名參加2011年職工勞技大賽,將這64名員工編號為1~64,若已知8號、24號、56號在樣本中,那么樣本中最后一個員工的號碼是__________14.已知為等比數列的前n項和,若,,則_____________.15.雙曲線的焦距為____________16.數列的前項和為,若,則=____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,已知拋物線的焦點與橢圓的右焦點重合(1)求橢圓的離心率;(2)求拋物線的方程;(3)設是拋物線上一點,且,求點的坐標18.(12分)已知圓,是圓上一點,過A作直線l交圓C于另一點B,交x軸正半軸于點D,且A為的中點.(1)求圓C在點A處的切線方程;(2)求直線l的方程.19.(12分)如圖,四邊形是正方形,平面,,(1)證明:平面平面;(2)若與平面所成角為,求二面角的余弦值20.(12分)已知等差數列的前項和為,,.(1)求的通項公式;(2)設數列的前項和為,用符號表示不超過x的最大數,當時,求的值.21.(12分)一位父親在孩子出生后,每月給小孩測量一次身高,得到前7個月的數據如下表所示.月齡1234567身高(單位:厘米)52566063656870(1)求小孩前7個月的平均身高;(2)求出身高y關于月齡x的回歸直線方程(計算結果精確到整數部分);(3)利用(2)的結論預測一下8個月的時候小孩的身高參考公式:22.(10分)已知a>0,b>0,a+b=1,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】求導,令導數等于0,然后判斷導數符號可得,或者根據對勾函數圖象可解.【詳解】令,得,因為時,,時,,所以時有極大值;當時,,時,,所以時有極小值.故選:B2、D【解析】作差法即可逐項判斷.【詳解】或,對于A:,∵,無法判斷正負,故A錯誤;對于B:,∵無法判斷正負,故B錯誤;對于C:,∵,,∴,,故C錯誤;對于D:,∴,故D正確.故選:D.3、D【解析】設,根據題意可得,由雙曲線定義得、,進而求出(用表示),然后在中,應用勾股定理得出關系,求得離心率【詳解】易知共線,共線,如圖,設,則.因為,所以,則,則,又因為,所以,則,在中,,即,所以.故選:D4、B【解析】設等比數列的公比為,根據求得,從而可得出答案.【詳解】解:設等比數列的公比為,則,所以,則.故選:B.5、B【解析】設出直線,并與拋物線聯立,得到,再根據拋物線的定義建立等式即可求解.【詳解】因為直線l的方程為,即,由消去y,得,設,則,又因為弦的中點到拋物線的準線的距離為3,所以,而,所以,故,解得,所以拋物線的方程為故選:B.6、D【解析】根據特稱命題的否定為全稱命題,即可得到答案.【詳解】因為命題,,所以,.故選:D7、B【解析】利用正弦定理求解.【詳解】在中,由正弦定理得,解得,故選:B.8、C【解析】根據數列前幾項,歸納猜想出數列的通項公式.【詳解】依題意,數列的前幾項為:;;;……則其通項公式.故選C.【點睛】本小題主要考查歸納推理,考查數列通項公式的猜想,屬于基礎題.9、A【解析】可設出缺少的數值,利用表中的數據,分別表示出、,將樣本中心點帶入回歸方程,即可求得參數.【詳解】設缺少的數值為,則,,因為回歸直線方程經過樣本點的中心,所以,解得.故選:A10、A【解析】由橢圓的面積為和兩焦點與短軸的一個端點構成等邊三角形,得到求解.【詳解】由題意得,解得,所以橢圓的標準方程是.故選:A11、B【解析】根據題意,結合圓柱和球的體積公式進行求解即可.【詳解】由題意可知:該旋轉體的體積等于底面半徑為,高為的圓柱的體積減去半徑為的球的體積,即,故選:B12、A【解析】根據題意利用點斜式寫出直線方程即可.【詳解】解:過點的直線與直線平行,,即.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、40【解析】結合系統抽樣的抽樣方法來確定最后抽取的號碼.【詳解】因為分段間隔為,故最后一個員工的號碼為.故答案為:14、30【解析】根據等比數列性質得,,也成等比,即可求得結果.【詳解】由等比數列的性質可知,,,構成首項為10,公比為1的等比數列,所以【點睛】本題考查等比數列性質,考查基本求解能力,屬基礎題.15、【解析】根據雙曲線的方程求出,再求焦距的值.【詳解】因為雙曲線方程為,所以,.雙曲線的焦距為.故答案為:.16、【解析】利用裂項相消法求和即可.【詳解】解:因為,所以.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)【解析】(1)由橢圓方程即可求出離心率.(2)求出橢圓的焦點即為拋物線的焦點,即可求出答案.(3)由拋物線定義可求出點的坐標【小問1詳解】由題意可知,.【小問2詳解】橢圓的右焦點為,故拋物線的焦點為.拋物線的方程為.【小問3詳解】設的坐標為,,解得,.故的坐標為.18、(1)(2)或【解析】(1)以直線方程的點斜式去求圓C在點A處的切線方程;(2)以A為的中點為突破口,設點法去求直線l的方程簡單快捷.【小問1詳解】圓可化為,圓心因為直線的斜率為,所以圓C在A點處切線斜率為2,所以切線方程為即.【小問2詳解】由題意設因為是中點,所以將B代入圓C方程得解得或當時,,此時l方程為當時,,此時l方程為所以l方程為或19、(1)證明見解析;(2).【解析】(1)連接與交于點O,易得平面,取的中點M,易得為平行四邊形,即,得到平面,然后利用面面垂直的判定定理證明;(2)以A為坐標原點,分別為x,y,z軸,建立空間直角坐標系,設,根據與平面所成角為,由,解得,然后分別求得平面的一個法向量,平面的一個法向量,由求解.【詳解】(1)如圖所示:連接與交于點O,因為為正方形,故,又平面,故,由,故平面,取的中點M,連接,注意到為的中位線,故,且,因此,且,故為平行四邊形,即,因此平面,而平面,故平面平面(2)以A坐標原點,分別為x,y,z軸,建立空間直角坐標系,設,則,由(1)可知平面,因此平面的一個法向量為,而,由與平面所成角為,得,即,解得;則,設平面的一個法向量為,則得令,則,故設平面的一個法向量,則得令,則,,故所以,注意到二面角為鈍二面角,故二面角的余弦值為20、(1)(2)9【解析】(1)首先根據已知條件分別求出的首項和公差,然后利用等差數列的通項公式求解即可;(2)首先利用等差數列求和公式求出,然后利用裂項相消法和分組求和法求出,進而可求出的通項公式,最后利用等差數列求和公式求解即可.【小問1詳解】不妨設等差數列的公差為,故,,解得,,從而,即的通項公式為.【小問2詳解】由題意可知,,所以,故,因為當時,;當時,,所以,由可知,,即,解得,即值為9.21、(1)62;(2);(3)74.【解析】(1)直接利用平均數的計算公式即可求解;(2)套公式求出b、a,求出回歸方程;(3)把x=8代入回歸方程

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論