哈爾濱市第九中學2024屆高二上數學期末質量檢測模擬試題含解析_第1頁
哈爾濱市第九中學2024屆高二上數學期末質量檢測模擬試題含解析_第2頁
哈爾濱市第九中學2024屆高二上數學期末質量檢測模擬試題含解析_第3頁
哈爾濱市第九中學2024屆高二上數學期末質量檢測模擬試題含解析_第4頁
哈爾濱市第九中學2024屆高二上數學期末質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

哈爾濱市第九中學2024屆高二上數學期末質量檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數及其導函數,若存在使得,則稱是的一個“巧值點”.下列選項中沒有“巧值點”的函數是()A. B.C. D.2.已知數列中,,當時,,設,則數列的通項公式為()A. B.C. D.3.已知橢圓C:的兩個焦點分別為,,橢圓C上有一點P,則的周長為()A.8 B.10C. D.124.某地政府為落實疫情防控常態化,不定時從當地780名公務員中,采用系統抽樣的方法抽取30人做核酸檢測.把這批公務員按001到780進行編號,若054號被抽中,則下列編號也被抽中的是()A.076 B.104C.390 D.5225.已知雙曲線,過原點作一條傾斜角為的直線分別交雙曲線左、右兩支于、兩點,以線段為直徑的圓過右焦點,則雙曲線的離心率為().A. B.C. D.6.已知三個觀測點,在的正北方向,相距,在的正東方向,相距.在某次爆炸點定位測試中,兩個觀測點同時聽到爆炸聲,觀測點晚聽到,已知聲速為,則爆炸點與觀測點的距離是()A. B.C. D.7.在棱長為1的正四面體中,點滿足,點滿足,當和的長度都為最短時,的值是()A. B.C. D.8.在四棱錐中,底面是正方形,為的中點,若,則()A. B.C. D.9.函數的最小值為()A. B.1C.2 D.e10.已知不等式只有一個整數解,則m的取值范圍是()A. B.C. D.11.給出命題:若函數是冪函數,則函數的圖象不過第四象限.在它的逆命題、否命題、逆否命題三個命題中,真命題的個數是()A.3 B.2C.1 D.012.已知過點的直線與圓相切,且與直線平行,則()A.2 B.1C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設函數,,若存在,成立,則實數的取值范圍為__________.14.已知的頂點A(1,5),邊AB上的中線CM所在的直線方程為,邊AC上的高BH所在直線方程為,求(1)頂點C的坐標;(2)直線BC的方程;15.已知橢圓()中,成等比數列,則橢圓的離心率為_______.16.如圖,在三棱錐P–ABC的平面展開圖中,AC=1,,AB⊥AC,AB⊥AD,∠CAE=30°,則cos∠FCB=______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,橢圓的離心率為,且點在橢圓C上(1)求橢圓C的標準方程;(2)過點的直線與橢圓C交于A,B兩點,試探究直線上是否存在定點Q,使得為定值.若存在,求出定點Q的坐標及實數的值;若不存在,請說明理由18.(12分)已知拋物線的準線方程是.(Ⅰ)求拋物線的方程;(Ⅱ)設直線與拋物線相交于,兩點,為坐標原點,證明:.19.(12分)自我國爆發新冠肺炎疫情以來,各地醫療單位都加緊了醫療用品的生產.某醫療器械廠統計了口罩生產車間每名工人的生產速度,并將所得數據分成五組并繪制出如圖所示的頻率分布直方圖.已知前四組的頻率成等差數列,第五組與第二組的頻率相等(1)估計口罩生產車間工人生產速度的中位數(結果寫成分數的形式);(2)為了解該車間工人生產速度是否與他們的工作經驗有關,現從車間所有工人中隨機抽樣調查了5名工人的生產速度以及他們的工齡(參加工作的年限),數據如下表:工齡x(單位:年)4681012生產速度y(單位:件/小時)4257626267根據上述數據求每名工人的生產速度y關于他的工齡x的回歸方程,并據此估計該車間某位有16年工齡的工人的生產速度附:回歸方程中斜率和截距的最小二乘估計公式為:,20.(12分)某校高二年級全體學生參加了一次數學測試,學校利用簡單隨機抽樣的方法從甲班、乙班各抽取五名同學的數學測試成績(單位:分)得到如下莖葉圖,若甲、乙兩班數據的中位數相等且平均數也相等.(1)求出莖葉圖中m和n的值:(2)若從86分以上(不含86分)的同學中隨機抽出兩名,求此兩人都來自甲班的概率.21.(12分)某村莊擬修建一個無蓋的圓柱形蓄水池(不計厚度).設該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設建造成本僅與表面積有關,側面積的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為12000π元(π為圓周率)(1)將V表示成r的函數V(r),并求該函數的定義域;(2)討論函數V(r)的單調性,并確定r和h為何值時該蓄水池的體積最大22.(10分)在△ABC中,(1)求B的大小;(2)求cosA+cosC的最大值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】利用新定義:存在使得,則稱是的一個“巧點”,對四個選項中的函數進行一一的判斷即可【詳解】對于A,,則,令,解得或,即有解,故選項A的函數有“巧值點”,不符合題意;對于B,,則,令,令,則g(x)在x>0時為增函數,∵(1),(e),由零點的存在性定理可得,在上存在唯一零點,即方程有解,故選項B的函數有“巧值點”,不符合題意;對于C,,則,令,故方程無解,故選項C的函數沒有“巧值點”,符合題意;對于D,,則,令,則.∴方程有解,故選項D的函數有“巧值點”,不符合題意故選:C2、A【解析】根據遞推關系式得到,進而利用累加法可求得結果【詳解】數列中,,當時,,,,,且,,故選:A3、B【解析】根據橢圓的定義可得:,所以的周長等于【詳解】因為,,所以,故的周長為故選:B4、D【解析】根據題意,求得組數與抽中編號的對應關系,即可判斷和選擇.【詳解】從780名公務員中,采用系統抽樣的方法抽取30人做核酸檢測,故需要分為組,每組人,設第組抽中的編號為,設,由題可知:,故可得,故可得.當時,.故選:.5、A【解析】設雙曲線的左焦點為,連接、,求得、,利用雙曲線的定義可得出關于、的等式,即可求得雙曲線的離心率.【詳解】設雙曲線的左焦點為,連接、,如下圖所示:由題意可知,點為的中點,也為的中點,且,則四邊形為矩形,故,由已知可知,由直角三角形的性質可得,故為等邊三角形,故,所以,,由雙曲線的定義可得,所以,.故選:A.6、D【解析】根據題意作出示意圖,然后結合余弦定理解三角形即可求出結果.【詳解】設爆炸點為,由于兩個觀測點同時聽到爆炸聲,則點位于的垂直平分線上,又在的正東方向且觀測點晚聽到,則點位于的左側,,,,設,則,解得,則爆炸點與觀測點的距離為,故選:D.7、A【解析】根據給定條件確定點M,N的位置,再借助空間向量數量積計算作答.【詳解】因,則,即,而,則共面,點M在平面內,又,即,于是得點N在直線上,棱長為1的正四面體中,當長最短時,點M是點A在平面上的射影,即正的中心,因此,,當長最短時,點N是點D在直線AC上的射影,即正邊AC的中點,,而,,所以.故選:A8、C【解析】由為的中點,根據向量的運算法則,可得,即可求解.【詳解】由底面是正方形,E為的中點,且,根據向量的運算法則,可得.故選:C.9、B【解析】先化簡為,然后通過換元,再研究外層函數單調性,進而求得的最小值【詳解】化簡可得:令,故的最小值即為的最小值,是關于的單調遞增函數,易知對求導可得:當時,單調遞減;當時,單調遞增則有:故選:B10、B【解析】依據導函數得到函數的單調性,數形結合去求解即可解決.【詳解】不等式只有一個整數解,可化為只有一個整數解令,則當時,,單調遞增;當時,,單調遞減,則當時,取最大值,當時,恒成立,的草圖如下:,,則若只有一個整數解,則,即故不等式只有一個整數解,則m的取值范圍是故選:B11、C【解析】若函數是冪函數,則函數的圖象不過第四象限,原命題是真命題,則其逆否命題也是真命題;其逆命題為:若函數的圖象不過第四象限,則函數是冪函數是假命題,所以原命題的否命題也是假命題.故它的逆命題、否命題、逆否命題三個命題中,真命題有一個.選C12、C【解析】先根據垂直關系設切線方程,再根據圓心到切線距離等于半徑列式解得結果.【詳解】因為切線與直線平行,所以切線方程可設為因為切線過點P(2,2),所以因為與圓相切,所以故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由不等式分離參數,令,則求即可【詳解】由,得,令,則當時,;當時,;所以在上單調遞減,在上單調遞增,故由于存在,成立,則故答案為:14、(1);(2).【解析】(1)設出點C的坐標,進而根據點C在中線上及求得答案;(2)設出點B的坐標,進而求出點M的坐標,然后根據中線的方程及求出點B的坐標,進而求出直線BC的方程.【小問1詳解】設C點的坐標為,則由題知,即.【小問2詳解】設B點的坐標為,則中點M坐標代入中線CM方程則由題知,即,又,則,所以直線BC方程為.15、【解析】根據成等比數列,可得,再根據的關系可得,然后結合的自身范圍解方程即可求出【詳解】∵成等比數列,∴,∴,∴,∴,又,∴故答案為:【點睛】本題主要考查橢圓的離心率的計算以及等比數列定義的應用,意在考查學生的數學運算能力,屬于基礎題16、【解析】在中,利用余弦定理可求得,可得出,利用勾股定理計算出、,可得出,然后在中利用余弦定理可求得的值.【詳解】,,,由勾股定理得,同理得,,在中,,,,由余弦定理得,,在中,,,,由余弦定理得.故答案為:.【點睛】本題考查利用余弦定理解三角形,考查計算能力,屬于中等題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)存在,定點的坐標為,實數的值為【解析】(1)由題意可得,再結合,可求出,從而可求得橢圓方程,(2)設在直線上存在定點,當直線斜率存在時,設過點P的動直線l為,設,,將直線方程代入橢圓方程消去,利用根與系數,再計算為常數可求出,從而可求得,當直線斜率不存在時,可求出兩點的坐標,從而可求得的值【小問1詳解】由題意知結合,可得,所以橢圓C的標準方程為,【小問2詳解】設在直線上存在定點,使為定值,①當直線斜率存在時,設過點P的動直線l為,設,·由得,則,,所以為常數則,解之得,即定點為,則②當直線斜率不存在時,即動直線方程為,不妨設,,此時也成立所以,存在定點使為定值,即18、(Ⅰ)(Ⅱ)詳見解析【解析】(Ⅰ)利用排趨性的準線方程求出p,即可求解拋物線的方程;(Ⅱ)直線y=k(x-2)(k≠0)與拋物線聯立,通過韋達定理求解直線的斜率關系即可證明OM⊥ON試題解析:(Ⅰ)解:因為拋物線的準線方程為,所以,解得,所以拋物線的方程為.(Ⅱ)證明:設,.將代入,消去整理得.所以.由,,兩式相乘,得,注意到,異號,所以.所以直線與直線的斜率之積為,即.考點:直線與拋物線的位置關系;拋物線的標準方程19、(1)(2)80件/小時【解析】(1)先利用等差數列的通項公式和頻率分布直方圖各矩形的面積之和為1求出各組頻率,再利用頻率分布直方圖求中位數;(2)先求出、,利用最小二乘法求出回歸直線方程,再進行預測其生產速度.【小問1詳解】解:設前4組的頻率分別為,,,,公差為,由頻率分布直方圖,得,即,解得,則,,所以中位數為.【小問2詳解】解:由題意,得,,由所給公式,得,,所以回歸直線方程為,則當時,,即估計該車間某位有16年工齡的工人的生產速度為80件/小時.20、(1),(2)【解析】(1)根據莖葉圖得甲班中位數為,由此能求出,根據由,且,能求出.(2)甲班86分以上有2人,乙班86分以有2人,從86分以上(不含86分)的同學中隨機抽出兩名,用列舉法寫出基本事件總數,再利用古典概型的概率計算公式即可求解.【小問1詳解】根據莖葉圖可知1班中位數為86,則,又∵,且故【小問2詳解】由(1)可知,甲班86分以上有2人,乙班86以上有2人設甲班86分以上2人為,,乙班86分以上2人為,,從中任取兩名同學共有,,,,,共有6組基本事件,且每組出現都是等可能的記:“從86分以上(不含86分)的同學中隨機抽出兩名,兩人都來自甲班”為事件M,事件M包括:共1個基本事件,由古典概型的計算概率的公式知∴所以兩人都來自甲班的概率為21、(1)V(r)=(300r﹣4r3)(0,5)(2)見解析【解析】(1)先由圓柱的側面積及底面積計算公式計算出側面積及底面積,進而得出總造價,依條件得等式,從中算出,進而可計算,再由可得;(2)通過求導,求出函數在內的極值

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論