




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省珠海一中等六校2023年數學高二上期末預測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若某群體中的成員只用現金支付的概率為,既用現金支付也用非現金支付的概率為,則不用現金支付的概率為()A. B.C. D.2.若曲線f(x)=x2的一條切線l與直線平行,則l的方程為()A.4x-y-4=0 B.x+4y-5=0C.x-4y+3=0 D.4x+y+4=03.已知空間向量,且與垂直,則等于()A.-2 B.-1C.1 D.24.函數,則的值為()A B.C. D.5.拋物線的焦點到直線的距離為,則()A.1 B.2C. D.46.已知雙曲線的兩個焦點,,是雙曲線上一點,且,,則雙曲線的標準方程是()A. B.C. D.7.設曲線在點處的切線與x軸、y軸分別交于A,B兩點,O為坐標原點,則的面積等于()A.1 B.2C.4 D.68.若x,y滿足約束條件,則的最大值為()A.2 B.3C.4 D.59.在直三棱柱中,,,,則異面直線與所成角的余弦值為()A. B.C. D.10.已知向量,且,則的值為()A.4 B.2C.3 D.111.如果在一實驗中,測得的四組數值分別是,則y與x之間的回歸直線方程是()A. B.C. D.12.經過兩點直線的傾斜角是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數列是遞增等比數列,,則數列的前項和等于.14.已知拋物線的焦點坐標為,則該拋物線上一點到焦點的距離的取值范圍是___________.15.已知內角A,B,C的對邊為a,b,c,已知,且,則c的最小值為__________.16.已知是等差數列,,,設,數列前n項的和為,則______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在棱長為1的正方體ABCD-A1B1C1D1中,求平面ACD1的一個法向量.18.(12分)在平面直角坐標系中,已知菱形的頂點和所在直線的方程為.(1)求對角線所在直線的一般方程;(2)求所在直線的一般方程.19.(12分)已知函數f(x)=ax-2lnx(1)討論f(x)的單調性;(2)設函數g(x)=x-2,若存在,使得f(x)≤g(x),求a的取值范圍20.(12分)如圖1,在中,,,,分別是,邊上的中點,將沿折起到的位置,使,如圖2(1)求點到平面距離;(2)在線段上是否存在一點,使得平面與平面夾角的余弦值為.若存在,求出長;若不存在,請說明理由21.(12分)已知,,函數,直線是函數圖象的一條對稱軸(1)求函數的解析式及單調遞增區間;(2)若,,的面積為,求的周長22.(10分)為了了解高二段1000名學生一周課外活動情況,隨機抽取了若干學生的一周課外活動時間,時間全部介于10分鐘與110分鐘之間,將課外活動時間按如下方式分成五組:第一組,第二組,…,第五組.按上述分組方法得到的頻率分布直方圖如圖所示,已知圖中從左到右前3個組的頻率之比為3∶8∶19,且第二組的頻數為8(1)求第一組數據的頻率并計算調查中隨機抽取了多少名學生的一周課外活動時間;(2)求這組數據的平均數
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】利用對立事件概率公式可求得所求事件的概率.【詳解】由對立事件的概率公式可知,該群體中的成員不用現金支付的概率為.故選:A.2、D【解析】設切點為,則切線的斜率為,然后根據條件可得的值,然后可得答案.【詳解】設切點為,因為,所以切線的斜率為因為曲線f(x)=x2的一條切線l與直線平行,所以,即所以l的方程為,即故選:D3、B【解析】直接利用空間向量垂直的坐標運算即可解決.【詳解】∵∴∴,解得,故選:B.4、B【解析】求出函數的導數,代入求值即可.【詳解】函數,故,所以,故選:B5、B【解析】首先確定拋物線的焦點坐標,然后結合點到直線距離公式可得的值.【詳解】拋物線的焦點坐標為,其到直線的距離:,解得:(舍去).故選:B.6、D【解析】根據條件設,,由條件求得,即可求得雙曲線方程.【詳解】設,則由已知得,,又,,又,,雙曲線的標準方程為.故選:D7、C【解析】求出原函數的導函數,得到函數在處的導數值,寫出切線方程,分別求得切線在兩坐標軸上的坐標,再由三角形面積公式求解【詳解】由,得,,又切線過點,曲線在點處的切線方程為,取,得,取,得的面積等于故選:C8、C【解析】作出不等式組對應的可行域,再利用數形結合分析求解.【詳解】解:作出不等式組對應的可行域為如圖所示的陰影部分區域,由得,它表示斜率為縱截距為的直線系,當直線平移到點時,縱截距最大,最大.聯立直線方程得得.所以.故選:C9、D【解析】以為坐標原點,向量,,方向分別為、、軸建立空間直角坐標系,利用空間向量夾角公式進行求解即可.【詳解】以為坐標原點,向量,,方向分別為、、軸建立空間直角坐標系,則,,,,所以,,,,,因此異面直線與所成角的余弦值等于.故選:D.10、A【解析】由題意可得,利用空間向量數量積的坐標表示列方程,解方程即可求解.【詳解】因為,所以,因為向量,,所以,解得,所以的值為,故選:A.11、B【解析】根據已知數據求樣本中心點,由樣本中心點在回歸直線上,將其代入各選項的回歸方程驗證即可.【詳解】由題設,,因為回歸直線方程過樣本點中心,A:,排除;B:,滿足;C:,排除;D:,排除.故選:B12、B【解析】求出直線的斜率后可得傾斜角【詳解】經過兩點的直線的斜率為,設該直線的傾斜角為,則,又,所以.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意,,解得或者,而數列是遞增的等比數列,所以,即,所以,因而數列的前項和,故答案為.考點:1.等比數列的性質;2.等比數列的前項和公式.14、【解析】根據題意,求得,得到焦點坐標,結合拋物線的定義,得到,根據,求得,即可求解.【詳解】由拋物線的焦點坐標為,可得,解得,設拋物線上的任意一點為,焦點為,由拋物線的定義可得,因為,所以,所以拋物線上一點到焦點的距離的取值范圍是.故答案為:.15、【解析】先利用正弦定理邊化角式子,得到,再利用正弦定理求出,根據與的關系,求得,即可求得c的最小值.【詳解】,即,又,當最大時,即,最小,且為由正弦定理得:,當時,c的最小值為故答案為:【點睛】方法點睛:在解三角形題目中,若已知條件同時含有邊和角,但不能直接使用正弦定理或余弦定理得到答案,要選擇“邊化角”或“角化邊”,變換原則常用:(1)若式子含有的齊次式,優先考慮正弦定理,“角化邊”;(2)若式子含有的齊次式,優先考慮正弦定理,“邊化角”;(3)若式子含有的齊次式,優先考慮余弦定理,“角化邊”;(4)代數變形或者三角恒等變換前置;(5)同時出現兩個自由角(或三個自由角)時,要用到.16、-3033【解析】先求得,進而得到,再利用并項法求解.【詳解】解:因為是等差數列,且,,所以,解得,所以,則,所以,,,,.故答案為:-3033三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、【解析】建立空間直角坐標系,由向量法求法向量即可.【詳解】如圖,建立空間直角坐標系,則設平面ACD1的法向量.,又為平面ACD1的一個法向量,化簡得令x=1,得y=z=1.平面ACD1的一個法向量.【點睛】本題主要考查了求平面的法向量,屬于中檔題.18、(1)(2)【解析】(1)首先求的中點,再利用垂直關系求直線的斜率,即可求解;(2)首先求點的坐標,再求直線的斜率,求得直線的斜率,利用點斜式直線方程,即可求解.【小問1詳解】由和得:中點四邊形為菱形,,且中點,對角線所在直線方程為:,即:.【小問2詳解】由,解得:,,,,直線的方程為:,即:.19、(1)答案見解析;(2).【解析】(1)根據實數a的正負性,結合導數的性質分類討論求解即可;(2)利用常變量分離法,通過構造函數,利用導數的性質進行求解即可.【小問1詳解】當a≤0時,在(0,+∞)上恒成立;當a>0時,令得;令得;綜上:a≤0時f(x)在(0,+∞)上單調遞減;a>0時,f(x)在上單調遞減,在上單調遞增;【小問2詳解】由題意知ax-2lnx≤x-2在(0,+∞)上有解則ax≤x-2+2lnx,令,xg'(x)+0-g(x)↗極大值↘所以,因此有所以a的取值范圍為:【點睛】關鍵點睛:運用常變量分離法利用導數的性質是解題的關鍵.20、(1)(2)存在,【解析】(1)根據題意分別由已知條件計算出的面積和的面積,利用求解,(2)如圖建立空間直角坐標系,設,然后求出平面與平面的法向量,利用向量平夾角公式列方程可求得結果【小問1詳解】在中,,因為,分別是,邊上的中點,所以∥,,所以,所以,因為,所以平面,所以平面,因為平面,所以,所以,因為平面,平面,所以平面平面,因為,所以,因為,所以是等邊三角形,取的中點,連接,則,,因為平面平面,平面平面,平面,所以平面,在中,,所以邊上的高為,所以,在梯形中,,設點到平面的距離為,因為,所以,所以,得,所以點到平面的距離為【小問2詳解】由(1)可知平面,,所以以為原點,建立如圖所示的空間直角坐標系,則,設,則,設平面的法向量為,則,令,則,設平面的法向量為,則,令,則,則平面與平面夾角的余弦值為,兩邊平方得,,解得或(舍去),所以,所以21、(1),單調遞增區間為.(2)【解析】(1)先利用向量數量積運算、二倍角公式、輔助角公式求出,再求單增區間;(2)利用面積公式求出,再利用余弦定理求出,即可求出周長.小問1詳解】已知,,函數,所以.因為直線是函數圖象的一條對稱軸,所以,所以,又,所以當k=0時,符合題意,此時要求的單調遞增區間,只需,解得:,所以的單調遞增區間為.【小問2詳解】由于,所以,所以.因為,所以.因為的面積為,所以,即,解得:.又,由余弦定理可得:,即,所以,所以,所以的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 共享汽車項目投資計劃書
- 空調出租合同協議書圖片
- 股份轉讓合同協議書模板
- 廣告標書維修服務方案
- 企業數字化轉型的戰略規劃與實施案例
- 中國聚烯烴熱塑性彈性體項目投資計劃書
- 物流分站加盟合同協議書
- 就業協議書是勞動合同
- 健身工作室好評文案
- 制作合同協議書原聲視頻
- 骨痿臨床路徑及表單
- 六年級下冊美術(嶺南版)期末測試題
- 2023年年全國職業院校技能大賽(中職組)2023年液壓與氣動系統裝調與維護賽項樣題D卷(模塊2)
- 西方思想經典-南京大學中國大學mooc課后章節答案期末考試題庫2023年
- 2023年06月廣東惠州市人民檢察院招考聘用勞動合同制司法輔助人員8人上岸筆試必備資料歷年題庫參考附答案詳解
- 家校攜手決戰中考-九年級家長會課件
- 2022-2023學年畢節地區赫章縣六年級下學期小升初真題精選數學試卷含答案
- 幼兒園學前-《紙花開放》教學設計學情分析教材分析課后反思
- 蘇州昆山鹿城村鎮銀行2023年招聘人員筆試歷年難、易錯考點試題含答案附詳解
- 營養專科護士理論考核試題及答案
- 山西煤炭運銷集團錦瑞煤業有限公司煤炭資源開發利用、地質環境保護與土地復墾方案
評論
0/150
提交評論