




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽省宣城市三校2023-2024學年高二上數學期末質量跟蹤監視模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在如圖所示的棱長為1的正方體中,點P在側面所在的平面上運動,則下列四個命題中真命題的個數是()①若點P總滿足,則動點P的軌跡是一條直線②若點P到點A的距離為,則動點P的軌跡是一個周長為的圓③若點P到直線AB的距離與到點C的距離之和為1,則動點P的軌跡是橢圓④若點P到平面的距離與到直線CD的距離相等,則動點P的軌跡是拋物線A.1 B.2C.3 D.42.過橢圓的左焦點作弦,則最短弦的長為()A. B.2C. D.43.圓錐曲線具有豐富的光學性質,從橢圓的一個焦點發出的光線,經過橢圓反射后,反射光線經過橢圓的另一個焦點.直線l:與橢圓C:相切于點P,橢圓C的焦點為,,由光學性質知直線,與l的夾角相等,則的角平分線所在的直線的方程為()A. B.C. D.4.已知函數,若,則等于()A. B.1C.ln2 D.e5.為推動黨史學習教育各項工作扎實開展,營造“學黨史、悟思想、辦實事、開新局”的濃厚氛圍,某校黨委計劃將中心組學習、專題報告會、黨員活動日、主題班會、主題團日這五種活動分5個階段安排,以推動黨史學習教育工作的進行,若主題班會、主題團日這兩個階段相鄰,且中心組學習必須安排在前兩階段并與黨員活動日不相鄰,則不同的安排方案共有()A.10種 B.12種C.16種 D.24種6.在空間直角坐標系中,已知點M是點在坐標平面內的射影,則的坐標是()A. B.C. D.7.已知空間四邊形,其對角線、,、分別是邊、的中點,點在線段上,且使,用向量,表示向量是A. B.C. D.8.若直線先向右平移一個單位,再向下平移一個單位,然后與圓相切,則c的值為()A.8或-2 B.6或-4C.4或-6 D.2或-89.若拋物線上的點到其焦點的距離是到軸距離的倍,則等于A. B.1C. D.210.已知是橢圓上的一點,則點到兩焦點的距離之和是()A.6 B.9C.14 D.1011.函數,的最小值為()A.2 B.3C. D.12.已知是雙曲線C的兩個焦點,P為C上一點,且,則C的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.過點作圓的切線l,直線與l平行,則直線l過定點_________,與l間的距離為____________14.當曲線與直線有兩個不同的交點時,實數k的取值范圍是____________15.函數在處的切線方程是_________16.已知定義在R上的函數的導函數,且,則實數的取值范圍為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知;對任意的恒成立.(1)若是真命題,求m的取值范圍;(2)若是假命題,是真命題,求m的取值范圍.18.(12分)已知橢圓的離心率為,過左焦點且垂直于長軸的弦長為.(1)求橢圓的標準方程;(2)點為橢圓的長軸上的一個動點,過點且斜率為的直線交橢圓于兩點,證明為定值.19.(12分)已知等差數列的前三項依次為,4,,前項和為,且.(1)求的通項公式及的值;(2)設數列的通項,求證是等比數列,并求的前項和.20.(12分)已知,,函數,直線是函數圖象的一條對稱軸(1)求函數的解析式及單調遞增區間;(2)若,,的面積為,求的周長21.(12分)(1)已知命題p:;命題q:,若“”為真命題,求x的取值范圍(2)設命題p:;命題q:,若是的充分不必要條件,求實數a的取值范圍22.(10分)設,分別是橢圓()的左、右焦點,E的離心率為.短軸長為2.(1)求橢圓E的方程:(2)過點的直線l交橢圓E于A,B兩點,是否存在實數t,使得恒成立?若存在,求出t的值;若不存在,說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據線面關系、距離關系可分別對每一個命題判斷.【詳解】若點P總滿足,又,,,可得對角面,因此點P的軌跡是直線,故①正確若點P到點A的距離為,則動點P的軌跡是以點B為圓心,以1為半徑的圓(在平面內),因此圓的周長為,故②正確點P到直線AB的距離PB與到點C的距離PC之和為1,又,則動點P的軌跡是線段BC,因此③不正確點P到平面的距離(即到直線的距離)與到直線CD的距離(即到點C的距離)相等,則動點P的軌跡是以線段BC的中點為頂點,直線BC為對稱軸的拋物線(在平面內),因此④正確故有①②④三個故選:C2、A【解析】求出橢圓的通徑,即可得到結果【詳解】過橢圓的左焦點作弦,則最短弦的長為橢圓的通徑:故選:A3、A【解析】先求得點坐標,然后求得的角平分線所在的直線的方程.【詳解】,直線的斜率為,由于直線,與l的夾角相等,則的角平分線所在的直線的斜率為,所以所求直線方程為.故選:A4、D【解析】求導,由得出.【詳解】,故選:D5、A【解析】對中心組學習所在的階段分兩種情況討論得解.【詳解】解:如果中心組學習在第一階段,主題班會、主題團日在第二、三階段,則其它活動有2種方法;主題班會、主題團日在第三、四階段,則其它活動有1種方法;主題班會、主題團日在第四、五階段,則其它活動有1種方法,則此時共有種方法;如果中心組學習在第二階段,則第一階段只有1種方法,后面的三個階段有種方法.綜合得不同的安排方案共有10種.故選:A6、C【解析】點在平面內的射影是坐標不變,坐標為0的點.【詳解】點在坐標平面內的射影為,故點M的坐標是故選:C7、C【解析】根據所給的圖形和一組基底,從起點出發,把不是基底中的向量,用是基底的向量來表示,就可以得到結論【詳解】解:故選:【點睛】本題考查向量的基本定理及其意義,解題時注意方法,即從要表示的向量的起點出發,沿著空間圖形的棱走到終點,若出現不是基底中的向量的情況,再重復這個過程,屬于基礎題8、A【解析】求出平移后的直線方程,再利用直線與圓相切并借助點到直線距離公式列式計算作答.【詳解】將直線先向右平移一個單位,再向下平移一個單位所得直線方程為,因直線與圓相切,從而得,即,解得或,所以c的值為8或-2.故選:A9、D【解析】根據拋物線的定義及題意可知3x0=x0+,得出x0求得p,即可得答案【詳解】由題意,3x0=x0+,∴x0=∴∵p>0,∴p=2.故選D【點睛】本題主要考查了拋物線的定義和性質.考查了考生對拋物線定義的掌握和靈活應用,屬于基礎題10、A【解析】根據橢圓的定義,可求得答案.【詳解】由可知:,由是橢圓上的一點,則點到兩焦點的距離之和為,故選:A11、B【解析】求導函數,分析單調性即可求解最小值【詳解】由,得,當時,,單調遞減;當時,,單調遞增∴當時,取得最小值,且最小值為故選:B.12、A【解析】根據雙曲線的定義及條件,表示出,結合余弦定理可得答案.【詳解】因為,由雙曲線的定義可得,所以,;因為,由余弦定理可得,整理可得,所以,即.故選:A【點睛】關鍵點睛:雙曲線的定義是入手點,利用余弦定理建立間的等量關系是求解的關鍵.二、填空題:本題共4小題,每小題5分,共20分。13、①.②.##2.4【解析】利用直線與平行,結合切線的性質求出切線的方程,即可確定定點坐標,再利用兩條平行線間的距離公式求兩線距離.【詳解】由題意,直線斜率,設直線的方程為,即∴直線l過定點,由與圓相切,得,解得,∴的方程為,的方程為,則兩直線間的距離為故答案為:;.14、【解析】求出直線恒過的定點,結合曲線的圖象,數形結合,找出臨界狀態,即可求得的取值范圍.【詳解】因為,故可得,其表示圓心為,半徑為的圓的上半部分;因為,即,其表示過點,且斜率為的直線.在同一坐標系下作圖如下:不妨設點,直線斜率為,且過點與圓相切的直線斜率為數形結合可知:要使得曲線與直線有兩個不同的交點,只需即可.容易知:;不妨設過點與相切的直線方程為,則由直線與圓相切可得:,解得,故.故答案為:.15、【解析】求得,利用導數的幾何意義,結合直線的點斜式方程,即可求得結果.【詳解】因為,則,,,故在處的切線方程是,整理得:.故答案為:.16、【解析】由題意可得在R上單調遞增,再由,利用函數的單調性轉化為關于的不等式求解【詳解】定義在R上的函數的導函數,在R上單調遞增,由,得,即實數的取值范圍為故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)為真命題,則都為真命題,求出為真命題時的m的取值范圍,并求交集,即為結果;(2)若是假命題,是真命題,則一真一假,分兩種情況進行求解,最后求并集即為結果.【小問1詳解】由題意得:為真命題,則要滿足,解得:,對任意的恒成立,結合開口向上,所以要滿足:,解得:,要保證是真命題,則與取交集,結果為【小問2詳解】是假命題,是真命題,則一真一假,結合(1)中所求,當真假時,與取交集,結果為;當假真時,與取交集,結果為,綜上:m的取值范圍是.18、(1);(2)證明見解析.【解析】(1)借助題設條件建立方程組求解;(2)依據題設運用直線與橢圓的位置關系探求.試題解析:(1)由,可得橢圓方程.(2)設的方程為,代入并整理得:.設,,則,同理則.所以,是定值.考點:橢圓的標準方程幾何性質及直線與橢圓的位置關系等有關知識的綜合運用【易錯點晴】本題考查的是橢圓的標準方程等基礎知識及直線與橢圓的位置關系等知識的綜合性問題.解答本題的第一問時,直接依據題設條件運用橢圓的幾何性質和橢圓的有關概念建立方程組,進而求得橢圓的標準方程為;第二問的求解過程中,先設直線的方程為,再借助二次方程中根與系數之間的關系,依據坐標之間的關系進行計算探求,從而使得問題獲解.19、(1),(2)證明見解析,【解析】(1)直接利用等差中項的應用求出的值,進一步求出數列的通項公式和的值;(2)利用等比數列的定義即可證明數列為等比數列,進一步求出數列的和.【小問1詳解】等差數列的前三項依次為,4,,∴,解得;故首項為2,公差為2,故,前項和為,且,整理得,解得或-11(負值舍去).∴,k=10.【小問2詳解】由(1)得:,故(常數),故數列是等比數列;∴.20、(1),單調遞增區間為.(2)【解析】(1)先利用向量數量積運算、二倍角公式、輔助角公式求出,再求單增區間;(2)利用面積公式求出,再利用余弦定理求出,即可求出周長.小問1詳解】已知,,函數,所以.因為直線是函數圖象的一條對稱軸,所以,所以,又,所以當k=0時,符合題意,此時要求的單調遞增區間,只需,解得:,所以的單調遞增區間為.【小問2詳解】由于,所以,所以.因為,所以.因為的面積為,所以,即,解得:.又,由余弦定理可得:,即,所以,所以,所以的周長.21、(1)(2)【解析】根據復合命題的真值表知:p真q假;非q是非p的充分不必要條件,等價于p是q的充分不必要條件,等價于p是q的真子集【詳解】命題p:,即;命題,即;由于“”為真命題,則p真q假,從而由q假得,,所以x的取值范圍是命題p:,即命題q:,即由于是的充分不必要條件,則p是q的充分不必要條件即有,【點睛】本題考查了復合命題及其真假屬基礎題22、(1)(2)存在,【解析】(1)由條件列出,,的方程,解方程求出,,,由此可得橢圓E的方程:(2)當直線的斜率存在時,設直線的方程為,聯立直線的方程與橢圓方程化簡可得,設,,可得,,由此證明,再證明當直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論