安徽合肥壽春中學2023-2024學年高二數學第一學期期末監測試題含解析_第1頁
安徽合肥壽春中學2023-2024學年高二數學第一學期期末監測試題含解析_第2頁
安徽合肥壽春中學2023-2024學年高二數學第一學期期末監測試題含解析_第3頁
安徽合肥壽春中學2023-2024學年高二數學第一學期期末監測試題含解析_第4頁
安徽合肥壽春中學2023-2024學年高二數學第一學期期末監測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽合肥壽春中學2023-2024學年高二數學第一學期期末監測試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖所示,在中,,,,AD為BC邊上的高,;若,則的值為()A. B.C. D.2.已知直線與直線平行,則實數a值為()A.1 B.C.1或 D.3.命題:“x>0,都有x2-x+1≤0”的否定是()A.x>0,使得x2-x+1≤0 B.x>0,使得x2-x+1>0C.x>0,都有x2-x+1>0 D.x≤0,都有x2-x+1>04.直線分別與軸,軸交于A,B兩點,點在圓上,則面積的取值范圍是()A B.C. D.5.設,若,則()A. B.C. D.6.已知為圓:上任意一點,則的最小值為()A. B.C. D.7.設是兩個非零向量,則“”是“夾角為鈍角”的A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件8.直線在y軸上的截距是A. B.C. D.9.已知是虛數單位,若復數滿足,則()A. B.2C. D.410.拋物線的焦點為F,點為該拋物線上的動點,點A是拋物線的準線與坐標軸的交點,則的最大值是()A.2 B.C. D.11.已知橢圓的長軸長,短軸長,焦距長成等比數列,則橢圓離心率為()A. B.C. D.12.函數,則不等式的解集是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數,則的值為______14.日常生活中的飲用水通常是經過凈化的.隨著水的純凈度的提高,所需凈化費用不斷増加.已知將噸水凈化到純凈度為時所需費用(單位:元)為.則凈化到純凈度為時所需費用的瞬時變化率是凈化到純凈度為時所需費用的瞬時變化率的___________倍,這說明,水的純凈度越高,凈化費用增加的速度越___________(填“快”或“慢”).15.若函數恰有兩個極值點,則k的取值范圍是______16.橢圓方程為橢圓內有一點,以這一點為中點的弦所在的直線方程為,則橢圓的離心率為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系內,已知的三個頂點坐標分別為(1)求邊的垂直平分線所在的直線的方程;(2)若面積為5,求點的坐標18.(12分)設a,b是實數,若橢圓過點,且離心率為.(1)求橢圓E的標準方程;(2)過橢圓E的上頂點P分別作斜率為,的兩條直線與橢圓交于C,D兩點,且,試探究過C,D兩點的直線是否過定點?若過定點,求出定點坐標;否則,說明理由.19.(12分)已知橢圓:的四個頂點組成的四邊形的面積為,且經過點.(1)求橢圓的方程;(2)若橢圓的下頂點為,如圖所示,點為直線上的一個動點,過橢圓的右焦點的直線垂直于,且與交于,兩點,與交于點,四邊形和的面積分別為,,求的最大值.20.(12分)已知點A(1,2)在拋物線C∶上,過點A作兩條直線分別交拋物線于點D,E,直線AD,AE的斜率分別為kAD,kAE,若直線DE過點P(-1,-2)(1)求拋物線C的方程;(2)求直線AD,AE的斜率之積.21.(12分)的內角A,B,C的對邊分別為a,b,c.已知.(1)求B(2)___________,若問題中的三角形存在,試求出;若問題中的三角形不存在,請說明理由.在①,②,③這三個條件中任選一個,補充在橫線上.注:如果選擇多個條件分別解答,按第一個解答計分.22.(10分)如圖,四棱柱的底面為正方形,平面,,,點在上,且.(1)求證:;(2)求直線與平面所成角的正弦值;(3)求平面與平面夾角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據題意求得,化簡得到,結合,求得的值,即可求解.【詳解】在中,,,,AD為BC邊上的高,可得,由又因為,所以,所以.故選:B.2、A【解析】根據兩直線平行的條件列方程,化簡求得,檢驗后確定正確答案.【詳解】由于直線與直線平行,所以,或,當時,兩直線方程都為,即兩直線重合,所以不符合題意.經檢驗可知符合題意.故選:A3、B【解析】全稱命題的否定是特稱命題,把任意改為存在,把結論否定.【詳解】“x>0,都有x2-x+1≤0”的否定是“x>0,使得x2-x+1>0”.故選:B4、A【解析】把求面積轉化為求底邊和底邊上的高,高就是圓上點到直線的距離.【詳解】與x,y軸的交點,分別為,,點在圓,即上,所以,圓心到直線距離為,所以面積的最小值為,最大值為.故選:A5、B【解析】先求出,再利用二倍角公式、和差角公式即可求解.【詳解】因為,且,所以.所以,,所以.故選:B6、C【解析】設,則的幾何意義為圓上的點和定點連線的斜率,利用直線和圓相切,即可求出的最小值;【詳解】圓,它圓心是,半徑為1,設,則,即,當直線和圓相切時,有,可得,,的最小值為:,故選:7、B【解析】因為時,夾角為鈍角或平角;而當夾角為鈍角時,成立,所以“”是“夾角為鈍角”的必要不充分條件.故選B考點:1向量的數量積;2充分必要條件8、D【解析】在y軸上的截距只需令x=0求出y的值即可得出.【詳解】令x=0,則y=-2,即直線在y周上的截距為-2,故選D.9、C【解析】先求出,然后根據復數的模求解即可【詳解】,,則,故選:C10、B【解析】設直線的傾斜角為,設垂直于準線于,由拋物線的性質可得,則,當直線PA與拋物線相切時,最小,取得最大值,設出直線方程得到直線和拋物線相切時的點P的坐標,然后進行計算得到結果.【詳解】設直線的傾斜角為,設垂直于準線于,由拋物線的性質可得,所以則,當最小時,則值最大,所以當直線PA與拋物線相切時,θ最大,即最小,由題意可得,設切線PA的方程為:,,整理可得,,可得,將代入,可得,所以,即P的橫坐標為1,即P的坐標,所以,,所以的最大值為:,故選:B【點睛】關鍵點睛:本題主要考查了拋物線的簡單性質.解題的關鍵是利用了拋物線的定義.一般和拋物線有關的小題,很多時可以應用結論來處理的;平時練習時應多注意拋物線的結論的總結和應用.尤其和焦半徑聯系的題目,一般都和定義有關,實現點點距和點線距的轉化11、A【解析】由題意,,結合,求解即可【詳解】∵橢圓的長軸長,短軸長,焦距長成等比數列∴∴又∵∴∴,即∴e=又在橢圓e>0∴e=故選:A12、A【解析】利用導數判斷函數單調遞增,然后進行求解.【詳解】對函數進行求導:,因為,,所以,因為,所以f(x)是奇函數,所以在R上單調遞增,又因為,所以的解集為.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求出的導函數,然后將代入可得答案.【詳解】,所以故答案為:14、①.②.快【解析】根據導數的概念可知凈化所需費用的瞬時變化率即為函數的一階導數,即先對函數求導,然后將和代入進行計算,再求,即可得到結果,進而能夠判斷水的純凈度越高,凈化費用增加的速度的快慢【詳解】由題意,可知凈化所需費用的瞬時變化率為,所以,,所以,所以凈化到純凈度為時所需費用的瞬時變化率是凈化到純凈度為時所需費用的瞬時變化率的倍;因為,可知水的純凈度越高,凈化費用增加的速度越快.故答案為:,快.15、【解析】求導得有兩個極值點等價于函數有一個不等于1的零點,分離參數得,令,利用導數研究的單調性并作出的圖象,根據圖象即可得出k的取值范圍【詳解】函數的定義域為,,令,解得或,若函數有2個極值點,則函數與圖象在上恰有1個橫坐標不為1的交點,而,令,令或,故在和上單調遞減,在上單調遞增,又,如圖所示,由圖可得.故答案為:16、【解析】設,利用“點差法”得到,即可求出離心率.【詳解】設直線與橢圓交于,則.因為AB中點,則.又,相減得:.所以所以所以,所以,即離心率.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)或【解析】(1)由題意直線的斜率公式,兩直線垂直的性質,求出的斜率,再用點斜式求直線的方程(2)根據面積為5,求得點到直線的距離,再利用點到直線的距離公式,求得的值【詳解】解:(1),,的中點的坐標為,又設邊的垂直平分線所在的直線的斜率為則,可得的方程為,即邊的垂直平分線所在的直線的方程(2)邊所在的直線方程為設邊上的高為即點到直線的距離為且解得解得或,點的坐標為或18、(1);(2)過定點,坐標為.【解析】(1)根據橢圓的離心率公式,結合代入法進行求解即可;(2)根據直線斜率公式和一元二次方程根與系數的關系進行求解即可.【小問1詳解】因為橢圓離心率為,所以有.橢圓過點,所以,由可解:,所以該橢圓方程為:;【小問2詳解】由(1)可知:,設直線的方程為:,若,由橢圓的對稱性可知:,不符合題意,當時,直線的方程與橢圓方程聯立得:,設,,,因為,所以,把代入得:,所以有或,解得:或,當時,直線,直線恒過定點,此時與點重合,不符合題意,當時,,直線恒過點,當直線不存在斜率時,此時,,因為,所以,兩點不在橢圓上,不符合題意,綜上所述:過C,D兩點的直線過定點,定點坐標為.【點睛】關鍵點睛:根據一元二次方程根與系數關系是解題的關鍵.19、(1)(2)【解析】(1)因為在橢圓上,所以,又因為橢圓四個頂點組成的四邊形的面積為,所以,解得,所以橢圓的方程為(2)由(1)可知,設,則當時,,所以,直線的方程為,即,由得,則,,,又,所以,由,得,所以,所以,當,直線,,,,,所以當時,.點睛:在圓錐曲線中研究最值或范圍問題時,若題目的條件和結論能體現一種明確的函數關系,則可首先建立目標函數,再求這個函數的最值.在利用代數法解決最值與范圍問題時常從以下方面考慮:①利用判別式來構造不等關系,從而確定參數的取值范圍;②利用已知參數的范圍,求新參數的范圍,解這類問題的關鍵是在兩個參數之間建立等量關系;③利用隱含或已知的不等關系建立不等式,從而求出參數的取值范圍.20、(1)(2)【解析】(1)代入點即可求得拋物線方程;(2)聯立方程后利用韋達定理求出,,,,然后代入即可求得斜率的積.【小問1詳解】解:點A(1,2)在拋物線C∶上故【小問2詳解】設直線方程為:聯立方程,整理得:由題意及韋達定理可得:,21、(1)(2)答案見解析【解析】(1)由正弦定理及正弦的兩角和公式可求解;(2)選擇條件①,由正弦定理及輔助角公式可求解;選擇條件②,由余弦定理及正切三角函數可求解;選擇條件③,由余弦定理可求解.【小問1詳解】由,可得,則.∴,在中,,則,∵,∴,∴,∵,∴.【小問2詳解】選擇條件①,在中,,可得,∵,∴,∴,根據輔助角公式,可得,∵,∴,即,故選擇條件②由,得,∵,∴,因此,,整理得,即,則.在中,,∴.故.選擇條件③由,得,即,整理得,由于,則方程無解,故不存在這樣的三角形.22、(1)證明見解析(2)(3)【解析】(1)以為原點,所在的直線為軸的正方向建立空間直角坐標系,求出平

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論