




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
吉林省乾安縣七中2023屆高三第二學期入學檢測試題試卷數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知定義在上的偶函數滿足,且在區間上是減函數,令,則的大小關系為()A. B.C. D.2.在中,角所對的邊分別為,已知,則()A.或 B. C. D.或3.若,則的虛部是A.3 B. C. D.4.設集合,則()A. B. C. D.5.趙爽是我國古代數學家、天文學家,大約在公元222年,趙爽為《周髀算經》一書作序時,介紹了“勾股圓方圖”,亦稱“趙爽弦圖”(以弦為邊長得到的正方形是由4個全等的直角三角形再加上中間的一個小正方形組成的).類比“趙爽弦圖”.可類似地構造如下圖所示的圖形,它是由3個全等的三角形與中間的一個小等邊三角形拼成一個大等邊三角形.設,若在大等邊三角形中隨機取一點,則此點取自小等邊三角形(陰影部分)的概率是()A. B. C. D.6.數列{an}是等差數列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,則實數λ的最大值為()A. B. C. D.7.數列的通項公式為.則“”是“為遞增數列”的()條件.A.必要而不充分 B.充要 C.充分而不必要 D.即不充分也不必要8.過雙曲線的左焦點作直線交雙曲線的兩天漸近線于,兩點,若為線段的中點,且(為坐標原點),則雙曲線的離心率為()A. B. C. D.9.為比較甲、乙兩名高二學生的數學素養,對課程標準中規定的數學六大素養進行指標測驗(指標值滿分為5分,分值高者為優),根據測驗情況繪制了如圖所示的六大素養指標雷達圖,則下面敘述正確的是()A.乙的數據分析素養優于甲B.乙的數學建模素養優于數學抽象素養C.甲的六大素養整體水平優于乙D.甲的六大素養中數據分析最差10.中國的國旗和國徽上都有五角星,正五角星與黃金分割有著密切的聯系,在如圖所示的正五角星中,以、、、、為頂點的多邊形為正五邊形,且,則()A. B. C. D.11.設復數滿足為虛數單位),則()A. B. C. D.12.已知函數,其中,記函數滿足條件:為事件,則事件發生的概率為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數,若函數有6個零點,則實數的取值范圍是_________.14.已知橢圓的離心率是,若以為圓心且與橢圓有公共點的圓的最大半徑為,此時橢圓的方程是____.15.若變量,滿足約束條件則的最大值是______.16.某外商計劃在個候選城市中投資個不同的項目,且在同一個城市投資的項目不超過個,則該外商不同的投資方案有____種.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在正四棱柱中,,,過頂點,的平面與棱,分別交于,兩點(不在棱的端點處).(1)求證:四邊形是平行四邊形;(2)求證:與不垂直;(3)若平面與棱所在直線交于點,當四邊形為菱形時,求長.18.(12分)已知.(1)求不等式的解集;(2)若存在,使得成立,求實數的取值范圍19.(12分)已知曲線,直線:(為參數).(I)寫出曲線的參數方程,直線的普通方程;(II)過曲線上任意一點作與夾角為的直線,交于點,的最大值與最小值.20.(12分)已知函數,.(1)證明:函數的極小值點為1;(2)若函數在有兩個零點,證明:.21.(12分)已知數列滿足,且,,成等比數列.(1)求證:數列是等差數列,并求數列的通項公式;(2)記數列的前n項和為,,求數列的前n項和.22.(10分)設橢圓的右焦點為,過的直線與交于兩點,點的坐標為.(1)當直線的傾斜角為時,求線段AB的中點的橫坐標;(2)設點A關于軸的對稱點為C,求證:M,B,C三點共線;(3)設過點M的直線交橢圓于兩點,若橢圓上存在點P,使得(其中O為坐標原點),求實數的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
可設,根據在上為偶函數及便可得到:,可設,,且,根據在上是減函數便可得出,從而得出在上單調遞增,再根據對數的運算得到、、的大小關系,從而得到的大小關系.【詳解】解:因為,即,又,設,根據條件,,;若,,且,則:;在上是減函數;;;在上是增函數;所以,故選:C【點睛】考查偶函數的定義,減函數及增函數的定義,根據單調性定義判斷一個函數單調性的方法和過程:設,通過條件比較與,函數的單調性的應用,屬于中檔題.2、D【解析】
根據正弦定理得到,化簡得到答案.【詳解】由,得,∴,∴或,∴或.故選:【點睛】本題考查了正弦定理解三角形,意在考查學生的計算能力.3、B【解析】
因為,所以的虛部是.故選B.4、C【解析】
解對數不等式求得集合,由此求得兩個集合的交集.【詳解】由,解得,故.依題意,所以.故選:C【點睛】本小題主要考查對數不等式的解法,考查集合交集的概念和運算,屬于基礎題.5、A【解析】
根據幾何概率計算公式,求出中間小三角形區域的面積與大三角形面積的比值即可.【詳解】在中,,,,由余弦定理,得,所以.所以所求概率為.故選A.【點睛】本題考查了幾何概型的概率計算問題,是基礎題.6、D【解析】
利用等差數列通項公式推導出λ,由d∈[1,2],能求出實數λ取最大值.【詳解】∵數列{an}是等差數列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,∴1+3d+λ(1+9d)+1+15d=15,解得λ,∵d∈[1,2],λ2是減函數,∴d=1時,實數λ取最大值為λ.故選D.【點睛】本題考查實數值的最大值的求法,考查等差數列的性質等基礎知識,考查運算求解能力,是基礎題.7、A【解析】
根據遞增數列的特點可知,解得,由此得到若是遞增數列,則,根據推出關系可確定結果.【詳解】若“是遞增數列”,則,即,化簡得:,又,,,則是遞增數列,是遞增數列,“”是“為遞增數列”的必要不充分條件.故選:.【點睛】本題考查充分條件與必要條件的判斷,涉及到根據數列的單調性求解參數范圍,屬于基礎題.8、C【解析】由題意可得雙曲線的漸近線的方程為.∵為線段的中點,∴,則為等腰三角形.∴由雙曲線的的漸近線的性質可得∴∴,即.∴雙曲線的離心率為故選C.點睛:本題考查了橢圓和雙曲線的定義和性質,考查了離心率的求解,同時涉及到橢圓的定義和雙曲線的定義及三角形的三邊的關系應用,對于求解曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據一個條件得到關于的齊次式,轉化為的齊次式,然后轉化為關于的方程(不等式),解方程(不等式),即可得(的取值范圍).9、C【解析】
根據題目所給圖像,填寫好表格,由表格數據選出正確選項.【詳解】根據雷達圖得到如下數據:數學抽象邏輯推理數學建模直觀想象數學運算數據分析甲454545乙343354由數據可知選C.【點睛】本題考查統計問題,考查數據處理能力和應用意識.10、A【解析】
利用平面向量的概念、平面向量的加法、減法、數乘運算的幾何意義,便可解決問題.【詳解】解:.故選:A【點睛】本題以正五角星為載體,考查平面向量的概念及運算法則等基礎知識,考查運算求解能力,考查化歸與轉化思想,屬于基礎題.11、B【解析】
易得,分子分母同乘以分母的共軛復數即可.【詳解】由已知,,所以.故選:B.【點睛】本題考查復數的乘法、除法運算,考查學生的基本計算能力,是一道容易題.12、D【解析】
由得,分別以為橫縱坐標建立如圖所示平面直角坐標系,由圖可知,.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題意首先研究函數的性質,然后結合函數的性質數形結合得到關于a的不等式,求解不等式即可確定實數a的取值范圍.【詳解】當時,函數在區間上單調遞增,很明顯,且存在唯一的實數滿足,當時,由對勾函數的性質可知函數在區間上單調遞減,在區間上單調遞增,結合復合函數的單調性可知函數在區間上單調遞減,在區間上單調遞增,且當時,,考查函數在區間上的性質,由二次函數的性質可知函數在區間上單調遞減,在區間上單調遞增,函數有6個零點,即方程有6個根,也就是有6個根,即與有6個不同交點,注意到函數關于直線對稱,則函數關于直線對稱,繪制函數的圖像如圖所示,觀察可得:,即.綜上可得,實數的取值范圍是.故答案為.【點睛】本題主要考查分段函數的應用,復合函數的單調性,數形結合的數學思想,等價轉化的數學思想等知識,意在考查學生的轉化能力和計算求解能力.14、【解析】
根據題意設為橢圓上任意一點,表達出,再根據二次函數的對稱軸與求解的關系分析最值求解即可.【詳解】因為橢圓的離心率是,,所以,故橢圓方程為.因為以為圓心且與橢圓有公共點的圓的最大半徑為,所以橢圓上的點到點的距離的最大值為.設為橢圓上任意一點,則.所以因為的對稱軸為.(i)當時,在上單調遞增,在上單調遞減.此時,解得.(ii)當時,在上單調遞減.此時,解得舍去.綜上,橢圓方程為.故答案為:【點睛】本題主要考查了橢圓上的點到定點的距離最值問題,需要根據題意設橢圓上的點,再求出距離,根據二次函數的對稱軸與區間的關系分析最值的取值點分類討論求解.屬于中檔題.15、9【解析】
做出滿足條件的可行域,根據圖形,即可求出的最大值.【詳解】做出不等式組表示的可行域,如圖陰影部分所示,目標函數過點時取得最大值,聯立,解得,即,所以最大值為9.故答案為:9.【點睛】本題考查二元一次不等式組表示平面區域,利用數形結合求線性目標函數的最值,屬于基礎題.16、60【解析】試題分析:每個城市投資1個項目有種,有一個城市投資2個有種,投資方案共種.考點:排列組合.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)證明見解析;(3).【解析】
(1)由平面與平面沒有交點,可得與不相交,又與共面,所以,同理可證,得證;(2)由四邊形是平行四邊形,且,則不可能是矩形,所以與不垂直;(3)先證,可得為的中點,從而得出是的中點,可得.【詳解】(1)依題意都在平面上,因此平面,平面,又平面,平面,平面與平面平行,即兩個平面沒有交點,則與不相交,又與共面,所以,同理可證,所以四邊形是平行四邊形;(2)因為,兩點不在棱的端點處,所以,又四邊形是平行四邊形,,則不可能是矩形,所以與不垂直;(3)如圖,延長交的延長線于點,若四邊形為菱形,則,易證,所以,即為的中點,因此,且,所以是的中位線,則是的中點,所以.【點睛】本題考查了立體幾何中的線線平行和垂直的判定問題,和線段長的求解問題,意在考查學生的空間想象能力和邏輯推理能力;解答本題關鍵在于能利用直線與直線、直線與平面、平面與平面關系的相互轉化,屬中檔題.18、(1).(2).【解析】試題分析:(Ⅰ)通過討論x的范圍,得到關于x的不等式組,解出取并集即可;(Ⅱ)求出f(x)的最大值,得到關于a的不等式,解出即可.試題解析:(1)不等式等價于或或,解得或,所以不等式的解集是;(2),,,解得實數的取值范圍是.點睛:含絕對值不等式的解法有兩個基本方法,一是運用零點分區間討論,二是利用絕對值的幾何意義求解.法一是運用分類討論思想,法二是運用數形結合思想,將絕對值不等式與函數以及不等式恒成立交匯、滲透,解題時強化函數、數形結合與轉化化歸思想方法的靈活應用,這是命題的新動向.19、(I);(II)最大值為,最小值為.【解析】試題分析:(I)由橢圓的標準方程設,得橢圓的參數方程為,消去參數即得直線的普通方程為;(II)關鍵是處理好與角的關系.過點作與垂直的直線,垂足為,則在中,,故將的最大值與最小值問題轉化為橢圓上的點,到定直線的最大值與最小值問題處理.試題解析:(I)曲線C的參數方程為(為參數).直線的普通方程為.(II)曲線C上任意一點到的距離為.則.其中為銳角,且.當時,取到最大值,最大值為.當時,取到最小值,最小值為.【考點定位】1、橢圓和直線的參數方程;2、點到直線的距離公式;3、解直角三角形.20、(1)見解析(2)見解析【解析】
(1)利用導函數的正負確定函數的增減.(2)函數在有兩個零點,即方程在區間有兩解,令通過二次求導確定函數單調性證明參數范圍.【詳解】解:(1)證明:因為,當時,,,所以在區間遞減;當時,,所以,所以在區間遞增;且,所以函數的極小值點為1(2)函數在有兩個零點,即方程在區間有兩解,令,則令,則,所以在單調遞增,又,故存在唯一的,使得,即,所以在單調遞減,在區間單調遞增,且,又因為,所以,方程關于的方程在有兩個零點,由的圖象可知,,即.【點睛】本題考查利用導數研究函數單調性,確定函數的極值,利用二次求導,零點存在性定理確定參數范圍,屬于難題.21、(1)見解析;(2)【解析】
(1)因為,所以,所以,所以數列是等差數列,設數列的公差為,由可得,因為成等比數列,所以,所以,所以,因為,所以,解得(舍去)或,所以,所以.(2)由(1)知,,所以,所以.22、(1)AB的中點的橫坐標為;(2)證明見解析;(3)【解析】
設.(1)因為直線的傾斜角為,,所以直線AB的方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 勞務公司低成本管理制度
- 大潤發商品銷售管理制度
- 公司員工電話卡管理制度
- 安全-文明施工管理制度
- 園區充電樁安全管理制度
- 地下室用電安全管理制度
- 服務窗口衛生管理制度
- 寫字樓保潔公司管理制度
- 客運公司gps管理制度
- 施工機器安全管理制度
- 2025年國家公務員考錄《申論》真題及參考答案(行政執法卷)
- 2025年互聯網營銷專業考試卷及答案
- 電梯考試復習測試卷附答案
- (完整版)10KV配電室安裝工程施工方案
- 幼兒衛生保健試題和參考答案解析
- 鍋爐基礎知識及水泥余熱發電鍋爐性能1
- 遼寧省建筑施工三類人員安全生產考核合格證變更申請表
- (完整版)家庭親密度與適應性量表
- DOE操作作業指導書
- 初三自主招生簡歷范文
- 側索硬化癥的概述
評論
0/150
提交評論