2023-2024學(xué)年福建省泉州市南安市僑光中學(xué)數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第1頁(yè)
2023-2024學(xué)年福建省泉州市南安市僑光中學(xué)數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第2頁(yè)
2023-2024學(xué)年福建省泉州市南安市僑光中學(xué)數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第3頁(yè)
2023-2024學(xué)年福建省泉州市南安市僑光中學(xué)數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第4頁(yè)
2023-2024學(xué)年福建省泉州市南安市僑光中學(xué)數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年福建省泉州市南安市僑光中學(xué)數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.命題“,”否定形式是()A., B.,C., D.,2.若直線a不平行于平面,則下列結(jié)論正確的是()A.內(nèi)的所有直線均與直線a異面 B.直線a與平面有公共點(diǎn)C.內(nèi)不存在與a平行的直線 D.內(nèi)的直線均與a相交3.若等差數(shù)列,其前n項(xiàng)和為,,,則()A.10 B.12C.14 D.164.“”是“直線和直線垂直”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分又非必要條件5.已知拋物線,過點(diǎn)作拋物線的兩條切線,點(diǎn)為切點(diǎn).若的面積不大于,則的取值范圍是()A. B.C. D.6.已知m,n是兩條不同直線,α,β,γ是三個(gè)不同平面,下列命題中正確的為A若α⊥γ,β⊥γ,則α∥β B.若m∥α,m∥β,則α∥βC.若m∥α,n∥α,則m∥n D.若m⊥α,n⊥α,則m∥n7.已知三維數(shù)組,,且,則實(shí)數(shù)()A.-2 B.-9C. D.28.如果直線與直線垂直,那么的值為()A. B.C. D.29.已知各項(xiàng)均為正數(shù)且單調(diào)遞減的等比數(shù)列滿足、、成等差數(shù)列.其前項(xiàng)和為,且,則()A. B.C. D.10.由倫敦著名建筑事務(wù)所SteynStudio設(shè)計(jì)的南非雙曲線大教堂驚艷世界,該建筑是數(shù)學(xué)與建筑完美結(jié)合造就的藝術(shù)品,若將如圖所示的大教堂外形弧線的一段近似看成雙曲線下支的一部分,離心率為,則該雙曲線的漸近線方程為()A. B.C. D.11.已知空間向量,則()A. B.C. D.12.古希臘數(shù)學(xué)家阿基米德利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的乘積.若橢圓C的中心為原點(diǎn),焦點(diǎn),均在y軸上,橢圓C的面積為,且短軸長(zhǎng)為,則橢圓C的標(biāo)準(zhǔn)方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等差數(shù)列滿足,,,則公差______14.日常生活中的飲用水通常是經(jīng)過凈化的.隨著水的純凈度的提高,所需凈化費(fèi)用不斷増加.已知將噸水凈化到純凈度為時(shí)所需費(fèi)用(單位:元)為.則凈化到純凈度為時(shí)所需費(fèi)用的瞬時(shí)變化率是凈化到純凈度為時(shí)所需費(fèi)用的瞬時(shí)變化率的___________倍,這說明,水的純凈度越高,凈化費(fèi)用增加的速度越___________(填“快”或“慢”).15.已知直線,,若,則實(shí)數(shù)______16.已知點(diǎn)在拋物線上,那么點(diǎn)到點(diǎn)的距離與點(diǎn)到拋物線焦點(diǎn)距離之和取得最小值時(shí),點(diǎn)的坐標(biāo)為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)全集U=R,集合A={x|1≤x≤5},集合B={x|2-a≤x≤1+2a},其中a∈R.(1)若“x∈A”是“x∈B”的充分條件,求a的取值范圍;(2)若“x∈A”是“x∈B”的必要條件,求a的取值范圍.18.(12分)一個(gè)長(zhǎng)方體的平面展開圖及該長(zhǎng)方體的直觀圖的示意圖如圖所示(1)請(qǐng)將字母F,G,H標(biāo)記在長(zhǎng)方體相應(yīng)的頂點(diǎn)處(不需說明理由):(2)若且有下面兩個(gè)條件:①;②,請(qǐng)選擇其中一個(gè)條件,使得DF⊥平面,并證明你的結(jié)論19.(12分)如圖甲,在直角三角形中,已知,,,D,E分別是的中點(diǎn).將沿折起,使點(diǎn)A到達(dá)點(diǎn)的位置,且,連接,得到如圖乙所示的四棱錐,M為線段上一點(diǎn).(1)證明:平面平面;(2)過B,C,M三點(diǎn)的平面與線段A'E相交于點(diǎn)N,從下列三個(gè)條件中選擇一個(gè)作為已知條件,求直線DN與平面A'BC所成角的正弦值.①;②直線與所成角的大小為;③三棱錐的體積是三棱錐體積的注:如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分.20.(12分)已知橢圓()的離心率為,一個(gè)焦點(diǎn)為.(1)求橢圓的方程;(2)設(shè)為原點(diǎn),直線()與橢圓交于不同的兩點(diǎn),且與x軸交于點(diǎn),為線段的中點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為.證明:是等腰直角三角形.21.(12分)已知,2,4,6中的三個(gè)數(shù)為等差數(shù)列的前三項(xiàng),且100不在數(shù)列中,102在數(shù)列中.(1)求數(shù)列的通項(xiàng);(2)設(shè),求數(shù)列的前項(xiàng)和.22.(10分)橢圓:()的離心率為,遞增直線過橢圓的左焦點(diǎn),且與橢圓交于兩點(diǎn),若,求直線的斜率.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】利用含有一個(gè)量詞的命題的否定的定義求解.【詳解】因?yàn)槊}“,是特稱命題,所以其否定是全稱命題,即為,故選:C2、B【解析】根據(jù)題意可得直線a與平面相交或在平面內(nèi),結(jié)合線面的位置關(guān)系依次判斷選項(xiàng)即可.【詳解】若直線a不平行與平面,則直線a與平面相交或在平面內(nèi).A:內(nèi)的所有直線均與直線a異面錯(cuò)誤,也可能相交,故A錯(cuò)誤;B:直線a與平面相交或直線a在平面內(nèi)都有公共點(diǎn),故B正確;C:平面內(nèi)不存在與a平行的直線,錯(cuò)誤,當(dāng)直線a在平面內(nèi)就存在與a平行的直線,故C錯(cuò)誤;D:平面內(nèi)的直線均與a相交,錯(cuò)誤,也可能異面,故D錯(cuò)誤.故選:B3、B【解析】由等差數(shù)列前項(xiàng)和的性質(zhì)計(jì)算即可.【詳解】由等差數(shù)列前項(xiàng)和的性質(zhì)可得成等差數(shù)列,,即,得.故選:B.4、A【解析】根據(jù)直線垂直求出值即可得答案.【詳解】解:若直線和直線垂直,則,解得或,則“”是“直線和直線垂直”的充分非必要條件.故選:A.5、C【解析】由題意,設(shè),直線方程為,則由點(diǎn)到直線的距離公式求出點(diǎn)到直線的距離,再聯(lián)立直線與拋物線方程,由韋達(dá)定理及弦長(zhǎng)公式求出,進(jìn)而可得,結(jié)合即可得答案.【詳解】解:因?yàn)閽佄锞€的性質(zhì):在拋物線上任意一點(diǎn)處的切線方程為,設(shè),所以在點(diǎn)處的切線方程為,在點(diǎn)B處的切線方程為,因?yàn)閮蓷l切線都經(jīng)過點(diǎn),所以,,所以直線的方程為,即,點(diǎn)到直線的距離為,聯(lián)立直線與拋物線方程有,消去得,由得,,由韋達(dá)定理得,所以弦長(zhǎng),所以,整理得,即,解得,又所以.故選:C.6、D【解析】根據(jù)空間線面、面面的平行,垂直關(guān)系,結(jié)合線面、面面的平行,垂直的判定定理、性質(zhì)定理解決【詳解】∵α⊥γ,β⊥γ,α與β的位置關(guān)系是相交或平行,故A不正確;∵m∥α,m∥β,α與β的位置關(guān)系是相交或平行,故B不正確;∵m∥α,n∥α,m與n的位置關(guān)系是相交、平行或異面∴故C不正確;∵垂直于同一平面的兩條直線平行,∴D正確;故答案D【點(diǎn)睛】本題考查線面平行關(guān)系判定,要注意直線、平面的不確定情況7、D【解析】由空間向量的數(shù)量積運(yùn)算即可求解【詳解】∵,,,,,,且,∴,解得故選:D8、A【解析】根據(jù)兩條直線垂直列方程,化簡(jiǎn)求得的值.【詳解】由于直線與直線垂直,所以.故選:A9、C【解析】先根據(jù),,成等差數(shù)列以及單調(diào)遞減,求出公比,再由即可求出,再根據(jù)等比數(shù)列通項(xiàng)公式以及前項(xiàng)和公式即可求出.【詳解】解:由,,成等差數(shù)列,得:,設(shè)的公比為,則,解得:或,又單調(diào)遞減,,,解得:,數(shù)列的通項(xiàng)公式為:,.故選:C10、B【解析】求出的值,可得出雙曲線的漸近線方程.【詳解】由已知可得,因此,該雙曲線的漸近線方程為.故選:B.11、C【解析】A利用向量模長(zhǎng)的坐標(biāo)表示判斷;B根據(jù)向量平行的判定,是否存在實(shí)數(shù)使即可判斷;C向量數(shù)量積的坐標(biāo)表示求即可判斷;D利用向量坐標(biāo)的線性運(yùn)算及數(shù)量積的坐標(biāo)表示求即可.【詳解】因?yàn)椋訟不正確:因?yàn)椴淮嬖趯?shí)數(shù)使,所以B不正確;因?yàn)椋剩訡正確;因?yàn)椋裕訢不正確故選:C12、C【解析】設(shè)出橢圓的標(biāo)準(zhǔn)方程,根據(jù)已知條件,求得,即可求得結(jié)果.【詳解】因?yàn)闄E圓的焦點(diǎn)在軸上,故可設(shè)其方程為,根據(jù)題意可得,,故可得,故所求橢圓方程為:.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】根據(jù)等差數(shù)列性質(zhì)求得,再根據(jù)題意列出相關(guān)的方程組,解得答案.【詳解】為等差數(shù)列,故由可得:,即,故,故,所以,解得,故答案為:214、①.②.快【解析】根據(jù)導(dǎo)數(shù)的概念可知凈化所需費(fèi)用的瞬時(shí)變化率即為函數(shù)的一階導(dǎo)數(shù),即先對(duì)函數(shù)求導(dǎo),然后將和代入進(jìn)行計(jì)算,再求,即可得到結(jié)果,進(jìn)而能夠判斷水的純凈度越高,凈化費(fèi)用增加的速度的快慢【詳解】由題意,可知凈化所需費(fèi)用的瞬時(shí)變化率為,所以,,所以,所以凈化到純凈度為時(shí)所需費(fèi)用的瞬時(shí)變化率是凈化到純凈度為時(shí)所需費(fèi)用的瞬時(shí)變化率的倍;因?yàn)椋芍募儍舳仍礁撸瑑艋M(fèi)用增加的速度越快.故答案為:,快.15、【解析】由直線垂直可得到關(guān)于實(shí)數(shù)a的方程,解方程即可.【詳解】由直線垂直可得:,解得:.故答案為:16、【解析】由拋物線定義可得,由此可知當(dāng)為與拋物線的交點(diǎn)時(shí),取得最小值,進(jìn)而求得點(diǎn)坐標(biāo).【詳解】由題意得:拋物線焦點(diǎn)為,準(zhǔn)線為作,垂直于準(zhǔn)線,如下圖所示:由拋物線定義知:(當(dāng)且僅當(dāng)三點(diǎn)共線時(shí)取等號(hào))即的最小值為,此時(shí)為與拋物線的交點(diǎn)故答案為【點(diǎn)睛】本題考查拋物線線上的點(diǎn)到焦點(diǎn)的距離與到定點(diǎn)距離之和最小的相關(guān)問題的求解,關(guān)鍵是能夠熟練應(yīng)用拋物線定義確定最值取得的位置.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由“”是“”的充分條件,可得,從而可得關(guān)于的不等式組,解不等式組可得答案;(2)“”是“”的必要條件,可得,然后分和兩種情況求解即可【小問1詳解】由題意得到A=[1,5],由“x∈A”是“x∈B”的充分條件可得A?B,則,解得,故實(shí)數(shù)a的取值范圍是.【小問2詳解】由“x∈A”是“x∈B”的必要條件可得B?A,當(dāng)時(shí),2-a>1+2a,即a<時(shí),滿足題意,當(dāng)時(shí),即a≥時(shí),則,解得≤a≤1.綜上a≤1,故實(shí)數(shù)a的取值范圍是.18、(1)答案見解析(2)答案見解析【解析】(1)由展開圖及直觀圖直接觀察可得;(2)選擇②,根據(jù)線面垂直的判定定理即可證明DF⊥平面.【小問1詳解】如圖,【小問2詳解】若選擇①,若此時(shí)有平面,則由平面可得,而平面,而平面,故,因?yàn)椋瑒t平面,由平面可得,故此時(shí)矩形為正方形,,矛盾.選擇條件②,使得平面,下面證明如圖,連接,在長(zhǎng)方體中,平面,而平面,故,而,故矩形為正方形,故,而,故平面,而平面,故,同理,又,所以平面.19、(1)證明見解析(2)【解析】(1)由線面垂直的判定定理及面面垂直的判定定理可得證;(2)分別選①,②,③可求得為的中點(diǎn),再以為坐標(biāo)原點(diǎn),向量的方向分別為軸,軸,軸建立空間直角坐標(biāo)系.利用空間向量求得所求的線面角.【小問1詳解】分別為的中點(diǎn),.,,.,,平面.又平面,∴平面平面.【小問2詳解】(2)選①,;,,,,為的中點(diǎn).選②,直線與所成角的大小為;,∴直線與所成角為.又直線與所成角的大小為,,,為的中點(diǎn).選③,三棱錐的體積是三棱錐體積的,又,即,為的中點(diǎn).∵過三點(diǎn)的平面與線段相交于點(diǎn)平面,平面.又平面平面,,為的中點(diǎn).兩兩互相垂直,∴以為坐標(biāo)原點(diǎn),向量的方向分別為軸,軸,軸的正方向,建立如圖所示的空間直角坐標(biāo)系.則;.設(shè)平面的一個(gè)法向量為,直線與平面所成的角為.由,得.令,得.則.∴直線與平面所成角的正弦值為.20、(1)(2)證明見解析.【解析】(1)由題知,進(jìn)而結(jié)合求解即可得答案;(2)設(shè)點(diǎn),,進(jìn)而聯(lián)立并結(jié)合題意得或,進(jìn)而結(jié)合韋達(dá)定理得,再的中點(diǎn)為,證明,進(jìn)而得,,故,綜合即可得證明.【小問1詳解】解:因?yàn)闄E圓的離心率為,一個(gè)焦點(diǎn)為所以,所以所以橢圓的方程為.【小問2詳解】解:設(shè)點(diǎn),則點(diǎn),所以聯(lián)立方程得,所以有,解得,因?yàn)椋驶蛟O(shè),所以設(shè)向量,所以,所以,即,設(shè)的中點(diǎn)為,則所以,又因?yàn)椋裕裕驗(yàn)辄c(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為.所以,所以,所以是等腰直角三角形.21、(1)(2)【解析】(1)確定數(shù)列為遞增數(shù)列,然后由4個(gè)數(shù)確定等差數(shù)列,得通項(xiàng)公式,驗(yàn)證100和10

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論