2023-2024學年湖北省普通高中協作體數學高二上期末質量檢測試題含解析_第1頁
2023-2024學年湖北省普通高中協作體數學高二上期末質量檢測試題含解析_第2頁
2023-2024學年湖北省普通高中協作體數學高二上期末質量檢測試題含解析_第3頁
2023-2024學年湖北省普通高中協作體數學高二上期末質量檢測試題含解析_第4頁
2023-2024學年湖北省普通高中協作體數學高二上期末質量檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年湖北省普通高中協作體數學高二上期末質量檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若變量x,y滿足約束條件,則目標函數最大值為()A.1 B.-5C.-2 D.-72.設、是兩條不同的直線,、、是三個不同的平面,則下列命題正確的是()A.若,則 B.若,則C.若,則 D.若,則3.如圖,若斜邊長為的等腰直角(與重合)是水平放置的的直觀圖,則的面積為()A.2 B.C. D.84.設橢圓C:的左、右焦點分別為、,P是C上的點,⊥,∠=,則C的離心率為A. B.C. D.5.若,則()A.1 B.2C.4 D.86.《張邱建算經》記載:今有女子不善織布,逐日織布同數遞減,初日織五尺,末一日織一尺,計織三十日,問第11日到第20日這10日共織布()A.30尺 B.40尺C.6尺 D.60尺7.若定義在R上的函數的圖象如圖所示,為函數的導函數,則不等式的解集為()A. B.C. D.8.已知雙曲線,過左焦點且與軸垂直的直線與雙曲線交于、兩點,若弦的長恰等于實鈾的長,則雙曲線的離心率為()A. B.C. D.9.若函數在定義域上單調遞增,則實數的取值范圍為()A. B.C. D.10.在等差數列中,,則等于A.2 B.18C.4 D.911.如圖在中,,,在內作射線與邊交于點,則使得的概率是()A. B.C. D.12.函數的定義域為開區間,導函數在內的圖像如圖所示,則函數在開區間內有極小值點()A.個 B.個C.個 D.個二、填空題:本題共4小題,每小題5分,共20分。13.唐代詩人李頎的詩《古從軍行》開頭兩句說:“白日登山望烽火,黃昏飲馬傍交河.”詩中隱含著一個有趣的數學問題——“將軍飲馬”,即將軍在觀望烽火之后從山腳下某處出發,先到河邊飲馬再回到軍營,怎樣走才能使總路程最短?在如圖所示的直角坐標系xOy中,設軍營所在平面區域為{(x,y)|x2+y2≤},河岸線所在直線方程為x+2y-4=0.假定將軍從點P(,)處出發,只要到達軍營所在區域即回到軍營,當將軍選擇最短路程時,飲馬點A的縱坐標為______.最短總路程為______14.在等比數列中,若,是方程兩根,則________.15.已知等差數列的公差,等比數列的公比q為正整數,若,,且是正整數,則______16.若命題“,使得”為假命題,則實數a的取值范圍是___________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在直三棱柱中,,,與交于點,為的中點,(1)求證:平面;(2)求證:平面平面18.(12分)已知數列{}的首項=2,(n≥2,),,.(1)證明:{+1}為等比數列;(2)設數列{}的前n項和,求證:.19.(12分)已知函數.(Ⅰ)求的單調遞減區間;(Ⅱ)若當時,恒成立,求實數a的取值范圍.20.(12分)已知三角形內角所對的邊分別為,且C為鈍角.(1)求cosA;(2)若,,求三角形的面積.21.(12分)某地從今年8月份開始啟動12-14歲人群新冠肺炎疫苗的接種工作,共有8千人需要接種疫苗.前4周的累計接種人數統計如下表:前x周1234累計接種人數y(千人)2.5344.5(1)求y關于的線性回歸方程;(2)根據(1)中所求的回歸方程,預計該地第幾周才能完成疫苗接種工作?參考公式:回歸方程中斜率和截距的最小二乘估計公式分別為,22.(10分)已知等差數列前n項和為,,,若對任意的正整數n成立,求實數的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】作出不等式組對應的平面區域,利用目標函數的幾何意義,進行求最值即可【詳解】解:由得作出不等式組對應的平面區域如圖(陰影部分平移直線,由圖象可知當直線,過點時取得最大值,由,解得,所以代入目標函數,得,故選:A2、B【解析】根據線線、線面、面面的位置關系,對選項進行逐一判斷即可.【詳解】選項A.一條直線垂直于一平面內的,兩條相交直線,則改直線與平面垂直則由,不能得出,故選項A不正確.選項B.,則正確,故選項B正確.選項C若,則與可能相交,可能異面,也可能平行,故選項C不正確.選項D.若,則與可能相交,可能平行,故選項D不正確.故選:B3、C【解析】由斜二測還原圖形計算即可求得結果.【詳解】在斜二測直觀圖中,由為等腰直角三角形,,可得,.還原原圖形如圖:則,則.故選:C4、D【解析】詳解】由題意可設|PF2|=m,結合條件可知|PF1|=2m,|F1F2|=m,故離心率e=選D.點睛:解決橢圓和雙曲線的離心率的求值及范圍問題其關鍵就是確立一個關于的方程或不等式,再根據的關系消掉得到的關系式,而建立關于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質、點的坐標的范圍等.5、D【解析】由題意結合導數的運算可得,再由導數的概念即可得解.【詳解】由題意,所以,所以.故選:D.6、A【解析】由題意可知,每日的織布數構成等差數列,由等差數列的求和公式得解.【詳解】由題女子織布數成等差數列,設第日織布為,有,所以,故選:A.7、A【解析】由函數單調性得出和的解,然后分類討論解不等式可得【詳解】由圖象可知:在為正,在為負,,可化為:或,解得或故選:A8、B【解析】求出,進而求出,之間的關系,即可求解結論【詳解】解:由題意,直線方程為:,其中,因此,設,,,,解得,得,,弦的長恰等于實軸的長,,,故選:B9、D【解析】函數在定義域上單調遞增等價于在上恒成立,即在上恒成立,然后易得,最后求出范圍即可.【詳解】函數的定義域為,,在定義域上單調遞增等價于在上恒成立,即在上恒成立,即在上恒成立,分離參數得,所以,即.【點睛】方法點睛:已知函數的單調性求參數的取值范圍的通解:若在區間上單調遞增,則在區間上恒成立;若在區間上單調遞減,則在區間上恒成立;然后再利用分離參數求得參數的取值范圍即可.10、D【解析】利用等差數列性質得到,,計算得到答案.詳解】等差數列中,故選D【點睛】本題考查了等差數列的計算,利用性質可以簡化運算,是解題的關鍵.11、C【解析】由題意可得,根據三角形中“大邊對大角,小邊對小角”的性質,將轉化為求的概率,又因為,,從而可得的概率【詳解】解:在中,,,所以,即,要使得,則,又因為,,則的概率是故選:C【點睛】本題考查幾何概型及其計算方法的知識,屬于基礎題12、A【解析】利用極小值的定義判斷可得出結論.【詳解】由導函數在區間內的圖象可知,函數在內的圖象與軸有四個公共點,在從左到右第一個點處導數左正右負,在從左到右第二個點處導數左負右正,在從左到右第三個點處導數左正右正,在從左到右第四個點處導數左正右負,所以函數在開區間內的極小值點有個,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】求出P(,)關于直線x+2y4=0對稱點P'的坐標,再求出線段OP'與直線x+2y-4=0的交點A,再利用圓的幾何性質可得結果.【詳解】設P(,)關于直線x+2y4=0的對稱點為P'(m,n),則解得因為從點P到軍營總路程最短,所以A為線段OP'與直線x+2y4=0的交點,聯立得y=(42y),解得y=.所以“將軍飲馬”的最短總路程為=,故答案為,.【點睛】本題主要考查對稱問題以及圓的幾何性質,屬于中檔題.解析幾何中點對稱問題,主要有以下三種題型:(1)點關于直線對稱,關于直線的對稱點,利用,且點在對稱軸上,列方程組求解即可;(2)直線關于直線對稱,利用已知直線與對稱軸的交點以及直線上特殊點的對稱點(利用(1)求解),兩點式求對稱直線方程;(3)曲線關于直線對稱,結合方法(1)利用逆代法求解.14、.【解析】由題意求得,,再結合等比數列的性質,即可求解.【詳解】由題意知,,是方程的兩根,可得,,又由,,所以,,可得,又由,所以.故答案為:.【點睛】本題主要考查了等比數列的通項公式,以及等比數列的性質的應用,其中解答中熟練應用等比數列的性質是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.15、【解析】由已知等差、等比數列以及,,是正整數,可得,結合q為正整數,進而求.【詳解】由,,令,其中m為正整數,有,又為正整數,所以當時,解得,當時,解得不是正整數,故答案為:16、(-1,0]【解析】將題意的命題轉化條件為“,”為真命題,結合一元二次不等式恒成立即可得解.【詳解】因為命題“,使得”是假命題,所以其否定“,”為真命題,即在R上恒成立.當時,不等式為,符合題意;當時,則需滿足,解得;綜上,實數的取值范圍為.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)證明見解析【解析】(1)根據直棱柱的性質、平行四邊形的性質,結合三角形中位線定理、線面平行的判定定理進行證明即可;(2)根據直棱柱的性質、菱形的判定定理和性質,結合線面垂直的判定定理、面面垂直的判定定理進行證明即可.【小問1詳解】在直三棱柱中,,且四邊形平行四邊形,又,則為的中點,又為的中點,故,即:,且平面,平面,所以平面;【小問2詳解】在直三棱柱中,平面,平面,則,且,,平面,故平面,因為平面,所以,又在平行四邊形中,,則四邊形菱形,所以,且,平面,故平面,因為平面,所以平面平面.18、(1)證明見解析(2)證明見解析【解析】(1)利用已知條件證明為常數即可;(2)求出和通項公式,再求出通項公式,利用裂項相消法可求,判斷的單調性即可求其范圍.【小問1詳解】∵=2,(n≥2,),∴當n≥2時,(常數),∴數列{+1}是公比為3的等比數列;【小問2詳解】由(1)知,數列{+1}是以3為首項,以3為公比的等比數列,∴,∴,∴∵,∴∴,∴∴.當n≥2時,∴{}為遞增數列,故的最小值為,∴.19、(Ⅰ)單調遞減區間為;(Ⅱ).【解析】(Ⅰ)求函數的導函數,求的區間即為所求減區間;(Ⅱ)化簡不等式,變形為,即求,令,求的導函數判斷的單調性求出最小值,可求出的范圍.【詳解】(Ⅰ)由題可知.令,得,從而,∴的單調遞減區間為.(Ⅱ)由可得,即當時,恒成立.設,則.令,則當時,.∴當時,單調遞增,,則當時,,單調遞減;當時,,單調遞增.∴,∴.【點睛】思路點睛:在函數中,恒成立問題,可選擇參變分離的方法,分離出參數轉化為或,轉化為求函數的最值求出的范圍.20、(1)(2)【解析】(1)由正弦定理邊化角,可求得角的正弦,由同角關系結合條件可得答案.(2)由(1),由余弦定理,求出邊的長,進一步求得面積【小問1詳解】因為,由正弦定理得因為,所以.因為角為鈍角,所以角為銳角,所以小問2詳解】由(1),由余弦定理,得,所以,解得或,不合題意舍去,故的面積為=21、(1);(2)預計第9周才能完成接種工作【解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論