導數與單調性課件_第1頁
導數與單調性課件_第2頁
導數與單調性課件_第3頁
導數與單調性課件_第4頁
導數與單調性課件_第5頁
已閱讀5頁,還剩8頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

函數的單調性5.3導數在研究函數的中的應用復習回顧01函數y=f(x)在給定區間D上,當x1、x2∈D且x1<x2時函數單調性yxoabyxoab1)都有f(x1)<f(x2),則f(x)在D上是增函數;2)都有f(x1)>f(x2),則f(x)在D上是減函數;若f(x)在D上是單調遞增函數或單調遞減函數,增函數減函數則f(x)在D上具有嚴格的單調性.D稱為單調區間

導數的幾何意義:過曲線y=f(x)上

的切線的斜率等于函數在處的導數.ox1y2.在x=1的左邊函數圖像上的各點切線的傾斜角為

(銳角/鈍角)?3.由導數的幾何意義,你可以得到什么結論?1.在x=1的左邊函數圖像的單調性如何?思考:知識生成02

在一次高臺跳水運動中,某運動員在運動過程中的重心相對于水面的高度h(單位:m)與起跳后的時間t(單位:s)存在函數關系:htovto圖5.3-1(1)(2)xyOxyOxyOxyOy=xy=x2y=x3

觀察下面一些函數的圖象,探討函數的單調性與其導函數正負的關系.圖5.3-2(1)(2)(3)(4)

從函數導數的幾何意義理解函數的單調性與導數正負的關系.xyoy=f(x)切線‘左下右上’切線‘左上右下’知識建構03導數與單調性aby=f(x)xoyy=f(x)xoyabf'(x)>0f'(x)<0定義:一般地,設函數y=f(x)在某個區間(a,b)內有導數,在某個區間(a,b)上,如果f'(x)>0,那么函數y=f(x)在區間(a,b)上單調遞增;在某個區間(a,b)上,如果f'(x)<

0,那么函數y=f(x)在區間(a,b)上單調遞減;如果在某個區間內恒有,則為常數.典例研習04例1.利用導數判斷下列函數的單調性:因此,函數在上單調遞增.解:(1)

因為,所以步驟:1.定義域2.求導3.判斷導數符號4.結論解:(2)

因為,所以因此,函數在上單調遞減.例2.已知導函數的下列信息:試畫出函數的圖象的大致形狀.xyO14圖5.3-5解:如右圖5.3-5例3.解:例4.已知函數f(x)=x2-ax+3在(0,1)上為減函數,函數g(x)=x2-alnx在(1,2)上單調遞增,則a等于A.1

B.2

C.0

D.∵函數f(x)=x2-ax+3在(0,1)上為減函數,即2x2≥a在x∈(1,2)時恒成立,有a≤2,∴a=2.解:例5.已知函數f(x)=ax2+ln(x+1).若函數f(x)在區間[1,+∞)上單調遞減,求實數a的取值范圍.因為函數f(x)在區

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論