代數式復習課_第1頁
代數式復習課_第2頁
代數式復習課_第3頁
代數式復習課_第4頁
代數式復習課_第5頁
已閱讀5頁,還剩55頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

《代數式》復習課

12023/9/1知識結構:整式的加減整式的概念整式的計算單項式多項式系數次數項,項數,常數項,最高次項次數同類項與合并同類項去括號化簡求值用字母來表示生活中的量22023/9/1定義:單項式中的_________。次數:1.當單項式的系數是1或-1時,“1”通常省略不寫。單項式:系數:數字或字母的乘積由_________________組成的式子。單獨的______或________也是單項式。單項式中的__________________.數字因數所有字母的指數和一個數一個字母注意的問題:2.當式子分母中出現字母時不是單項式。3.圓周率π是常數,不要看成字母。4.當單項式的系數是帶分數時,通常寫成假分數。5.單項式的系數應包括它前面的性質符號。6.單項式次數是指所有字母的次數的和,與數字的次數沒有關系。7.單獨的數字不含字母,規定它的次數是零次.32023/9/14,書寫格式中的易錯點例5下列各個式子中,書寫格式正確的是()1、代數式中用到乘法時,若是數字與數字乘,要用“×”

若是數字與字母乘,乘號通常寫成”.”或省略不寫,如

3×y應寫成3·y或3y,且數字與字母相乘時,字母與字母相乘,乘號通常寫成“·”或省略不寫。2、帶分數與字母相乘,要寫成假分數3、代數式中出現除法運算時,一般用分數寫,即用分數線代替除號。4、系數一般寫在字母的前面,且系數“1”往往會省略;F42023/9/11,單項式的定義例1,下列各式子中,是單項式的有______________(填序號)①、②、④、⑦注意:1,單個的字母或數字也是單項式;

2,用加減號把數字或字母連接在一起的式子不是單項式;

3,只用乘號把數字或字母連接在一起的式子仍是單項式;

4,當式子中出現分母時,要留意分母里有沒有字母,有字母的就不是單項式,如果分母沒有字母的仍有可能是單項式(注:“π”當作數字,而不是字母)52023/9/12,單項式的系數與次數單項式系數次數例2指出下列單項式的系數和次數;注意:1,字母的系數“1”

可以省略的,但不代表沒有系數(次數也是同樣道理);

2,有分母的單項式,分母中的數字也是單項式系數的一部分;

3,注意“π”不是字母,而是數字,屬于系數的一部分;

4,計算次數的時候并不是簡單的見到指數就相加,注意單項式的次數指的是字母的指數和;62023/9/1定義:幾個__________.常數項:多項式中_______________.多項式的次數:_________________________.

項:組成多項式中的_____________.

有幾項,就叫做_________.1.在確定多項式的項時,要連同它前面的符號,2.一個多項式的次數最高項的次數是幾,就說這個多項式是幾次多項式。3.在多項式中,每個單項式都是這個多項式的項,每一項都有系數,但對整個多項式來說,沒有系數的概念,只有次數的概念。多項式單項式的和每一個單項式幾項式不含字母的項多項式中次數最高的項的次數。注意的問題:72023/9/1由幾個單項式相加組成的代數式叫做多項式.是由兩個單項式相加構成多項式,因此它有項,最高次項是項,該項的次數是次,也就是說該多項式的次數是次23382023/9/13,多項式的項數與次數例3下列多項式次數為3的是()C例4請說出下列各多項式是幾次幾項式,并寫出多項式的最高次項和常數項;注意(1)多項式的次數不是所有項的次數的和,而是它的最高次項次數;(2)多項式的每一項都包含它前面的符號;(3)再強調一次,“π”當作數字,而不是字母92023/9/15.當x=1時,則當x=-1時,解:將x=1代入中得:

a+b-2=3

∴a+b=5;

當x=-1時

=-a-b-2

=-(a+b)-2

=-7=-5-2102023/9/1同類項的定義:(兩相同)合并同類項概念:_________________________.合并同類項法則:2._________________不變。2._________________相同。1.____相同,字母相同的字母的指數也1.______相加減;字母和字母的指數系數同類項注意:幾個常數項也是______同類項。(兩無關)2.與__________無關。1.與____無關系數

字母的位置把多項式中的同類項合并成一項112023/9/1例2下列合并同類項的結果錯誤的有_______________.①、②、③、④、⑤注意:1,合并同類項的法則是把同類項的系數相加,字母和字母的次數不變;

2,合并同類項后也要注意書寫格式;

3,如果兩個同類項的系數互為相反數,那么合并同類項后,結果得____;0122023/9/1(1)、如果 是同類項,那么

。(2)、如果 是同類項,那么

,

。243思考132023/9/12.若與是同類項,則m+n=___.4.若,則m+n-p=______543.若與的和是一個單項式,則=___.-41.下列各式中,是同類項的是:___________①與②與③與④與⑤與⑥-125與③⑤⑥142023/9/1數學·新課標(BS)例.若-3x2my3與2xy2n是同類項,則|m-n|的值是(

)A.0B.1C.7D.-1B152023/9/1整式的加減混合運算步驟(有括號先去括號)1.找同類項,做好標記。2.利用加法的交換律和結合律把同類項放在一起。3.利用乘法分配律計算結果。4.按要求按“升”或“降”冪排列。找組算排1.如果括號外的因數是正數,去括號后原括號內各項的符號與原來的符號相同。2.如果括號外的因數是負數,去括號后原括號內各項的符號與原來的符號相反。“去括號,看符號。是‘+’號,不變號,是‘-’號,全變號”一:去括號二:計算(按照先小括號,再中括號,最后大括號的順序)162023/9/1填填選選(1)、2(3x-2y)=

.(2)、-(a+b-c)=

.(3)、-2a+1的相反數是

.6x-4y-a-b+c2a-1172023/9/12,去括號中的易錯題:1,判斷下列各式是否正確:√××()()()×()去括號時,1,注意括號外面的符號,括號前面是“+”號,把括號和它前面的“+”號去掉,括號里各項都不用變符號;括號前面是“—”號,把括號和它前面的“—”號去掉,括號里各項都改變符號。2,注意外面有系數的,各項都要乘以那個系數;182023/9/1數學·新課標(BS)下列計算中結果正確的是(

)A.4+5ab=9ab

B.6xy-x=6yC.3a2b-3ba2=0D.12x3+5x4=17x7C192023/9/1數學·新課標(BS)下列各式中去括號正確的是(

)A.3(a+3b)=3a+3bB.-(-a+c)=a+cC.-2(a-b)=-2a+2bD.m+(n+a)=m-n+aC202023/9/1數學·新課標(BS)下列各項中,去括號正確的是(

)A.x2-(2x-y+2)=x2-2x+y+2B.-(m+n)-mn=-m+n-mnC.x-(5x-3y)+(2x-y)=-2x+2yD.ab-(-ab+3)=3C212023/9/1數學·新課標(BS)單項式-xa+bya-1與3x2y是同類項,則a-b的值為(

)A.2B.0C.-2D.1-x2n-1y與8x8y是同類項,則代數式(2n-9)2012的值是(

)A.0B.1C.-1D.1或-1AA222023/9/1

5a-(2a-4b)(a2+2a)-2(a2+4a)

解:原式=5a-2a+4b=3a+4b解:原式=a2+2a-2a2-8a=

-a2-6a

232023/9/1數學·新課標(BS)1.如果代數式a+2b的值為5,那么代數式2a+4b-3的值等于(

)A.7B.2C.-7D.4A242023/9/1數學·新課標(BS)2.如果代數式-2a+3b+8的值為18,那么代數式9b-6a+2的值等于______________.32252023/9/1知識歸類數學·新課標(BS)1.代數式用運算符號把數和表示數的_______連接而成的式子,叫做代數式.關于代數式,要注意把握兩點:一是單獨的一個數或_______也是代數式;二是只要不含有_______或_______的式子就是代數式.2.代數式書寫格式(1)數與字母相乘,應將____寫在前面;字母字母等號不等號數262023/9/1數學·新課標(BS)(2)數與字母相乘、字母與字母相乘,“×”應寫作__________或者__________;如a×10應寫作_______或者________,m×n應寫作_______或者______;(3)有除法運算時,要寫成分數的形式,如6÷(y-3)應寫成____.3.求代數式的值的步驟第一步,用_________代替代數式里的字母,簡稱____________;第二步,按照代數式指明的運算計算出結果,簡稱____________.“·”省略不寫10·a10am·nmn數值“代入”“計算”272023/9/1數學·新課標(BS)4.代數式的項和各項的系數代數式10x-5y有兩項,______與_______,每一項前面的_______因數叫做這一項的系數,10x的系數是_____,-5y的系數是_____;代數式6a2-2a-7有三項,_____、______與________,6a2的系數是____,-2a的系數是____,-7是常數項.5.同類項所含字母_________,并且相同字母的________也______的項,叫做同類項.10x-5y數字10-56a2-2a-76-2相同指數相同282023/9/1數學·新課標(BS)6.合并同類項(1)法則:合并同類項時,把同類項的系數________,所得的結果作為系數,字母和字母的指數________;(2)步驟:第一步,找出_________;第二步,利用法則,把同類項的_______加在一起,字母和字母的指數_______;第三步,利用有理數的加法計算出各項系數的和,寫出合并后的結果.相加不變同類項系數不變292023/9/17.去括號法則(1)括號前是“+”號,把括號和它前面的“+”號去掉,原括號里各項的符號都_____________;(2)括號前是“-”號,把括號和它前面的“-”號去掉,原括號里各項的符號都要_________.

不改變改變302023/9/1數學·新課標(BS)?考點一合并同類項考點攻略312023/9/1(1)下列各組代數式中,屬于同類項的是()

A、2x2y與2xy2B、xy與-xy

C、2x與2xyD、2x2與2y2(2)下列各式中,合并同類項正確的是()

A、-a+3a=2B、x2-2x2=-x

C、2x+x=3x

D、3a+2b=5ab(3)下列去括號,正確的是()A、-(a+b)=-a+bB、-(3x-2)=-3x-2

C、a2-(2a-1)=a2-2a+1D、x-2(y-z)=x-2y+zBCC322023/9/1先去括號,再合并同類項:

a-(2a-b)-2(a+2b).解:a-(2a-b)-2(a+2b)=a-2a+b-2a-4b=a-2a-2a+b-4b=-3a-3b.332023/9/1

整式的加減一般步驟(1)如果有括號就先去括號(2)然后再合并同類項.342023/9/11、合并同類項:小明的解法:(1)錯在把所有項都當作同類項了;正確的解法:352023/9/12、合并同類項:小明的解法:(2)錯在把結合同類項時弄錯了符號;正確的解法:總之,合并同類項現要找出式子中的同類項,并把它們寫在一起,最后合并,注意同類項的系數是帶符號的。362023/9/14,多重括號化簡的易錯題注意:有多重括號的,一般先去小括號,再去中括號,最后再去大括號;372023/9/1考點攻略數學·新課標(BS)?考點二

代數式及求值382023/9/1(1)化簡再求值2(a2-ab)-3(a2-ab)其中a=-2,b=3解:原式=2a2-2ab-3a2+3ab=-a2+ab當a=-2,b=3時-a2+ab=-(-2)2+(-2)×3=-4-6=-10392023/9/1(2)已知m-n=3,求4(m-n)-3m+3n+5的值解:原式=4(m-n)-3(m-n)+5=(m-n)+5=3+5=8402023/9/13.求當x=時,多項式的值。解:原式===把x=帶入中,得∴原式=5412023/9/1(先去括號)(降冪排列)(合并同類項)當x=-2時(代入時注意添上括號,乘號改為“×”)422023/9/1?考點三探索規律考點攻略432023/9/1根據下列圖形的排列規律,

…第2011個圖形是()A

B

C

D

C442023/9/1用小棒按下圖的方式搭三角形.三角形個數12345…n小棒根數…填寫下表:3

5

7

9112n+1452023/9/11個正方形用4根火柴棒2個正方形用____火柴棒3個正方形用__火柴棒………………..如圖:按下列格式用火柴棒搭建正方形7根10根(3n+1)根n個正方形用______火柴棒462023/9/1若按下圖方式將桌子拼在一起。2張桌子拼在一起可坐

人,3張桌子可坐

人,n張桌子可坐

人。2×2+42n+42×3+4472023/9/1

用紫、白兩種顏色的正六邊形地磚按下圖所示的規律排列,則第n個圖案中紫色正六邊形有()A、2+6nB、8+6nC、2+4nD、8n第1個第2個第3個……C482023/9/1數學·新課標(BS)為慶祝“六一”兒童節,某幼兒園舉行用火柴棒擺“金魚”比賽,第一個“金魚”用了8根火柴,如圖3-4所示:拼n個小魚要用

根火柴桿(6n+2)492023/9/1考點攻略?考點四代數式的應用502023/9/1

1、王強班有男生m人,女生比男生的一半多5人,王強班總人數(用m表示)為_____人。易錯點:結果不進行化簡,直接寫點撥:結果中有它們是同類項,應合并以保證最后的結果最簡.正確的寫法是3/2m+5512023/9/1例

某種手機卡的市話費上次已按原收費標準降低了m元/分鐘,現在再次下調20%,使收費標準為n元/分鐘,那么原收費標準為().B點撥:為了弄清各數之間的關系,我們可以借助方程來求解.假設原收費標準為每分鐘x元,可得:

解得.應選B.522023/9/12.用字母表示圖中陰影部分的面積:baab單位:cm532023/9/13.四邊形ABCD與ECGF是兩個邊長為ab的正方形,請用ab表示陰影部分的面積ab542023/9/1例

若多項式計算多項式A-2B;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論