重慶巴川量子中學(xué)2023屆全國(guó)初三沖刺考(四)全國(guó)I卷數(shù)學(xué)試題含解析_第1頁(yè)
重慶巴川量子中學(xué)2023屆全國(guó)初三沖刺考(四)全國(guó)I卷數(shù)學(xué)試題含解析_第2頁(yè)
重慶巴川量子中學(xué)2023屆全國(guó)初三沖刺考(四)全國(guó)I卷數(shù)學(xué)試題含解析_第3頁(yè)
重慶巴川量子中學(xué)2023屆全國(guó)初三沖刺考(四)全國(guó)I卷數(shù)學(xué)試題含解析_第4頁(yè)
重慶巴川量子中學(xué)2023屆全國(guó)初三沖刺考(四)全國(guó)I卷數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

重慶巴川量子中學(xué)2023屆全國(guó)初三沖刺考(四)全國(guó)I卷數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.若,則括號(hào)內(nèi)的數(shù)是A. B. C.2 D.82.下列運(yùn)算正確的是(

)A.a(chǎn)2·a3﹦a6

B.a(chǎn)3+a3﹦a6

C.|-a2|﹦a2

D.(-a2)3﹦a63.A,B兩地相距48千米,一艘輪船從A地順流航行至B地,又立即從B地逆流返回A地,共用去9小時(shí),已知水流速度為4千米/時(shí),若設(shè)該輪船在靜水中的速度為x千米/時(shí),則可列方程()A. B.C.+4=9 D.4.如圖,在已知的△ABC中,按以下步驟作圖:①分別以B、C為圓心,以大于BC的長(zhǎng)為半徑作弧,兩弧相交于點(diǎn)M、N;②作直線MN交AB于點(diǎn)D,連接CD,則下列結(jié)論正確的是()A.CD+DB=AB B.CD+AD=AB C.CD+AC=AB D.AD+AC=AB5.如圖,為測(cè)量一棵與地面垂直的樹(shù)OA的高度,在距離樹(shù)的底端30米的B處,測(cè)得樹(shù)頂A的仰角∠ABO為α,則樹(shù)OA的高度為()A.米 B.30sinα米 C.30tanα米 D.30cosα米6.如圖,把一個(gè)直角三角尺的直角頂點(diǎn)放在直尺的一邊上,若∠1=50°,則∠2=()A.20° B.30° C.40° D.50°7.比較4,,的大小,正確的是()A.4<< B.4<<C.<4< D.<<48.設(shè)0<k<2,關(guān)于x的一次函數(shù)y=(k-2)x+2,當(dāng)1≤x≤2時(shí),y的最小值是()A.2k-2B.k-1C.kD.k+19.下列所給的汽車(chē)標(biāo)志圖案中,既是軸對(duì)稱圖形,又是中心對(duì)稱圖形的是()A. B.C. D.10.如圖,已知是中的邊上的一點(diǎn),,的平分線交邊于,交于,那么下列結(jié)論中錯(cuò)誤的是()A.△BAC∽△BDA B.△BFA∽△BECC.△BDF∽△BEC D.△BDF∽△BAE二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.計(jì)算:2sin245°﹣tan45°=______.12.計(jì)算tan260°﹣2sin30°﹣cos45°的結(jié)果為_(kāi)____.13.計(jì)算(5ab3)2的結(jié)果等于_____.14.如圖,四邊形ABCD是菱形,∠DAB=50°,對(duì)角線AC,BD相交于點(diǎn)O,DH⊥AB于H,連接OH,則∠DHO=_____度.15.如圖,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,點(diǎn)D是BC上一動(dòng)點(diǎn),連接AD,將△ACD沿AD折疊,點(diǎn)C落在點(diǎn)E處,連接DE交AB于點(diǎn)F,當(dāng)△DEB是直角三角形時(shí),DF的長(zhǎng)為_(kāi)____.16.雙察下列等式:,,,…則第n個(gè)等式為_(kāi)____.(用含n的式子表示)三、解答題(共8題,共72分)17.(8分)如圖,拋物線y=ax2+bx+c與x軸相交于點(diǎn)A(﹣3,0),B(1,0),與y軸相交于(0,﹣),頂點(diǎn)為P.(1)求拋物線解析式;(2)在拋物線是否存在點(diǎn)E,使△ABP的面積等于△ABE的面積?若存在,求出符合條件的點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;(3)坐標(biāo)平面內(nèi)是否存在點(diǎn)F,使得以A、B、P、F為頂點(diǎn)的四邊形為平行四邊形?直接寫(xiě)出所有符合條件的點(diǎn)F的坐標(biāo),并求出平行四邊形的面積.18.(8分)我市正在創(chuàng)建“全國(guó)文明城市”,某校擬舉辦“創(chuàng)文知識(shí)”搶答賽,欲購(gòu)買(mǎi)A、B兩種獎(jiǎng)品以鼓勵(lì)搶答者.如果購(gòu)買(mǎi)A種20件,B種15件,共需380元;如果購(gòu)買(mǎi)A種15件,B種10件,共需280元.A、B兩種獎(jiǎng)品每件各多少元?現(xiàn)要購(gòu)買(mǎi)A、B兩種獎(jiǎng)品共100件,總費(fèi)用不超過(guò)900元,那么A種獎(jiǎng)品最多購(gòu)買(mǎi)多少件?19.(8分)我們把兩條中線互相垂直的三角形稱為“中垂三角形”.例如圖1,圖2,圖1中,AF,BE是△ABC的中線,AF⊥BE,垂足為P,像△ABC這樣的三角形均為“中垂三角形”.設(shè)BC=a,AC=b,AB=c.特例探索(1)如圖1,當(dāng)∠ABE=45°,c=時(shí),a=,b=;如圖2,當(dāng)∠ABE=10°,c=4時(shí),a=,b=;歸納證明(2)請(qǐng)你觀察(1)中的計(jì)算結(jié)果,猜想a2,b2,c2三者之間的關(guān)系,用等式表示出來(lái),請(qǐng)利用圖1證明你發(fā)現(xiàn)的關(guān)系式;拓展應(yīng)用(1)如圖4,在□ABCD中,點(diǎn)E,F(xiàn),G分別是AD,BC,CD的中點(diǎn),BE⊥EG,AD=,AB=1.求AF的長(zhǎng).20.(8分)如圖,點(diǎn)C在線段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.求證:CF⊥DE于點(diǎn)F.21.(8分)某市正在舉行文化藝術(shù)節(jié)活動(dòng),一商店抓住商機(jī),決定購(gòu)進(jìn)甲,乙兩種藝術(shù)節(jié)紀(jì)念品.若購(gòu)進(jìn)甲種紀(jì)念品4件,乙種紀(jì)念品3件,需要550元,若購(gòu)進(jìn)甲種紀(jì)念品5件,乙種紀(jì)念品6件,需要800元.(1)求購(gòu)進(jìn)甲、乙兩種紀(jì)念品每件各需多少元?(2)若該商店決定購(gòu)進(jìn)這兩種紀(jì)念品共80件,其中甲種紀(jì)念品的數(shù)量不少于60件.考慮到資金周轉(zhuǎn),用于購(gòu)買(mǎi)這80件紀(jì)念品的資金不能超過(guò)7100元,那么該商店共有幾種進(jìn)貨方案7(3)若銷(xiāo)售每件甲種紀(jì)含晶可獲利潤(rùn)20元,每件乙種紀(jì)念品可獲利潤(rùn)30元.在(2)中的各種進(jìn)貨方案中,若全部銷(xiāo)售完,哪一種方案獲利最大?最大利利潤(rùn)多少元?22.(10分)如圖1,B(2m,0),C(3m,0)是平面直角坐標(biāo)系中兩點(diǎn),其中m為常數(shù),且m>0,E(0,n)為y軸上一動(dòng)點(diǎn),以BC為邊在x軸上方作矩形ABCD,使AB=2BC,畫(huà)射線OA,把△ADC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得△A′D′C′,連接ED′,拋物線()過(guò)E,A′兩點(diǎn).(1)填空:∠AOB=°,用m表示點(diǎn)A′的坐標(biāo):A′(,);(2)當(dāng)拋物線的頂點(diǎn)為A′,拋物線與線段AB交于點(diǎn)P,且時(shí),△D′OE與△ABC是否相似?說(shuō)明理由;(3)若E與原點(diǎn)O重合,拋物線與射線OA的另一個(gè)交點(diǎn)為點(diǎn)M,過(guò)M作MN⊥y軸,垂足為N:①求a,b,m滿足的關(guān)系式;②當(dāng)m為定值,拋物線與四邊形ABCD有公共點(diǎn),線段MN的最大值為10,請(qǐng)你探究a的取值范圍.23.(12分)甲、乙、丙3名學(xué)生各自隨機(jī)選擇到A、B2個(gè)書(shū)店購(gòu)書(shū).(1)求甲、乙2名學(xué)生在不同書(shū)店購(gòu)書(shū)的概率;(2)求甲、乙、丙3名學(xué)生在同一書(shū)店購(gòu)書(shū)的概率.24.已知拋物線經(jīng)過(guò)點(diǎn),.把拋物線與線段圍成的封閉圖形記作.(1)求此拋物線的解析式;(2)點(diǎn)為圖形中的拋物線上一點(diǎn),且點(diǎn)的橫坐標(biāo)為,過(guò)點(diǎn)作軸,交線段于點(diǎn).當(dāng)為等腰直角三角形時(shí),求的值;(3)點(diǎn)是直線上一點(diǎn),且點(diǎn)的橫坐標(biāo)為,以線段為邊作正方形,且使正方形與圖形在直線的同側(cè),當(dāng),兩點(diǎn)中只有一個(gè)點(diǎn)在圖形的內(nèi)部時(shí),請(qǐng)直接寫(xiě)出的取值范圍.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

根據(jù)有理數(shù)的減法,減去一個(gè)數(shù)等于加上這個(gè)數(shù)的相反數(shù),可得答案.【詳解】解:,

故選:C.【點(diǎn)睛】本題考查了有理數(shù)的減法,減去一個(gè)數(shù)等于加上這個(gè)數(shù)的相反數(shù).2、C【解析】

根據(jù)同底數(shù)冪相乘,底數(shù)不變指數(shù)相加;合并同類(lèi)項(xiàng),只把系數(shù)相加減,字母與字母的次數(shù)不變;同底數(shù)冪相除,底數(shù)不變指數(shù)相減,對(duì)各選項(xiàng)計(jì)算后利用排除法求解.【詳解】a2·a3﹦a5,故A項(xiàng)錯(cuò)誤;a3+a3﹦2a3,故B項(xiàng)錯(cuò)誤;a3+a3﹦-a6,故D項(xiàng)錯(cuò)誤,選C.【點(diǎn)睛】本題考查同底數(shù)冪加減乘除及乘方,解題的關(guān)鍵是清楚運(yùn)算法則.3、A【解析】

根據(jù)輪船在靜水中的速度為x千米/時(shí)可進(jìn)一步得出順流與逆流速度,從而得出各自航行時(shí)間,然后根據(jù)兩次航行時(shí)間共用去9小時(shí)進(jìn)一步列出方程組即可.【詳解】∵輪船在靜水中的速度為x千米/時(shí),∴順流航行時(shí)間為:,逆流航行時(shí)間為:,∴可得出方程:,故選:A.【點(diǎn)睛】本題主要考查了分式方程的應(yīng)用,熟練掌握順流與逆流速度的性質(zhì)是解題關(guān)鍵.4、B【解析】

作弧后可知MN⊥CB,且CD=DB.【詳解】由題意性質(zhì)可知MN是BC的垂直平分線,則MN⊥CB,且CD=DB,則CD+AD=AB.【點(diǎn)睛】了解中垂線的作圖規(guī)則是解題的關(guān)鍵.5、C【解析】試題解析:在Rt△ABO中,∵BO=30米,∠ABO為α,∴AO=BOtanα=30tanα(米).故選C.考點(diǎn):解直角三角形的應(yīng)用-仰角俯角問(wèn)題.6、C【解析】

由兩直線平行,同位角相等,可求得∠3的度數(shù),然后求得∠2的度數(shù).【詳解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°?50°=40°.故選C.【點(diǎn)睛】本題主要考查平行線的性質(zhì),熟悉掌握性質(zhì)是關(guān)鍵.7、C【解析】

根據(jù)4=<且4=>進(jìn)行比較【詳解】解:易得:4=<且4=>,所以<4<故選C.【點(diǎn)睛】本題主要考查開(kāi)平方開(kāi)立方運(yùn)算。8、A【解析】

先根據(jù)0<k<1判斷出k-1的符號(hào),進(jìn)而判斷出函數(shù)的增減性,根據(jù)1≤x≤1即可得出結(jié)論.【詳解】∵0<k<1,∴k-1<0,∴此函數(shù)是減函數(shù),∵1≤x≤1,∴當(dāng)x=1時(shí),y最小=1(k-1)+1=1k-1.故選A.【點(diǎn)睛】本題考查的是一次函數(shù)的性質(zhì),熟知一次函數(shù)y=kx+b(k≠0)中,當(dāng)k<0,b>0時(shí)函數(shù)圖象經(jīng)過(guò)一、二、四象限是解答此題的關(guān)鍵.9、B【解析】分析:根據(jù)軸對(duì)稱圖形與中心對(duì)稱圖形的概念求解即可.詳解:A.是軸對(duì)稱圖形,不是中心對(duì)稱圖形;B.是軸對(duì)稱圖形,也是中心對(duì)稱圖形;C.是軸對(duì)稱圖形,不是中心對(duì)稱圖形;D.是軸對(duì)稱圖形,不是中心對(duì)稱圖形.故選B.點(diǎn)睛:本題考查了中心對(duì)稱圖形和軸對(duì)稱圖形的知識(shí),關(guān)鍵是掌握好中心對(duì)稱圖形與軸對(duì)稱圖形的概念.軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分折疊后可重合,中心對(duì)稱圖形是要尋找對(duì)稱中心,圖形旋轉(zhuǎn)180°后與原圖重合.10、C【解析】

根據(jù)相似三角形的判定,采用排除法,逐項(xiàng)分析判斷.【詳解】∵∠BAD=∠C,∠B=∠B,∴△BAC∽△BDA.故A正確.∵BE平分∠ABC,∴∠ABE=∠CBE,∴△BFA∽△BEC.故B正確.∴∠BFA=∠BEC,∴∠BFD=∠BEA,∴△BDF∽△BAE.故D正確.而不能證明△BDF∽△BEC,故C錯(cuò)誤.故選C.【點(diǎn)睛】本題考查相似三角形的判定.識(shí)別兩三角形相似,除了要掌握定義外,還要注意正確找出兩三角形的對(duì)應(yīng)邊和對(duì)應(yīng)角.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、0【解析】原式==0,故答案為0.12、1【解析】

分別算三角函數(shù),再化簡(jiǎn)即可.【詳解】解:原式=-2×-×=1.【點(diǎn)睛】本題考查掌握簡(jiǎn)單三角函數(shù)值,較基礎(chǔ).13、25a2b1.【解析】

代數(shù)式內(nèi)每項(xiàng)因式均平方即可.【詳解】解:原式=25a2b1.【點(diǎn)睛】本題考查了代數(shù)式的乘方.14、1.【解析】試題分析:∵四邊形ABCD是菱形,∴OD=OB,∠COD=90°,∵DH⊥AB,∴OH=BD=OB,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC,在Rt△COD中,∠ODC+∠DCO=90°,在Rt△DHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO=×50°=1°.考點(diǎn):菱形的性質(zhì).15、或【解析】試題分析:如圖4所示;點(diǎn)E與點(diǎn)C′重合時(shí).在Rt△ABC中,BC==4.由翻折的性質(zhì)可知;AE=AC=3、DC=DE.則EB=2.設(shè)DC=ED=x,則BD=4﹣x.在Rt△DBE中,DE2+BE2=DB2,即x2+22=(4﹣x)2.解得:x=.∴DE=.如圖2所示:∠EDB=90時(shí).由翻折的性質(zhì)可知:AC=AC′,∠C=∠C′=90°.∵∠C=∠C′=∠CDC′=90°,∴四邊形ACDC′為矩形.又∵AC=AC′,∴四邊形ACDC′為正方形.∴CD=AC=3.∴DB=BC﹣DC=4﹣3=4.∵DE∥AC,∴△BDE∽△BCA.∴,即.解得:DE=.點(diǎn)D在CB上運(yùn)動(dòng),∠DBC′<90°,故∠DBC′不可能為直角.考點(diǎn):翻折變換(折疊問(wèn)題).16、=【解析】

探究規(guī)律后,寫(xiě)出第n個(gè)等式即可求解.【詳解】解:…則第n個(gè)等式為故答案為:【點(diǎn)睛】本題主要考查二次根式的應(yīng)用,找到規(guī)律是解題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)y=x2+x﹣(2)存在,(﹣1﹣2,2)或(﹣1+2,2)(3)點(diǎn)F的坐標(biāo)為(﹣1,2)、(3,﹣2)、(﹣5,﹣2),且平行四邊形的面積為1【解析】

(1)設(shè)拋物線解析式為y=ax2+bx+c,把(﹣3,0),(1,0),(0,)代入求出a、b、c的值即可;(2)根據(jù)拋物線解析式可知頂點(diǎn)P的坐標(biāo),由兩個(gè)三角形的底相同可得要使兩個(gè)三角形面積相等則高相等,根據(jù)P點(diǎn)坐標(biāo)可知E點(diǎn)縱坐標(biāo),代入解析式求出x的值即可;(3)分別討論AB為邊、AB為對(duì)角線兩種情況求出F點(diǎn)坐標(biāo)并求出面積即可;【詳解】(1)設(shè)拋物線解析式為y=ax2+bx+c,將(﹣3,0),(1,0),(0,)代入拋物線解析式得,解得:a=,b=1,c=﹣∴拋物線解析式:y=x2+x﹣(2)存在.∵y=x2+x﹣=(x+1)2﹣2∴P點(diǎn)坐標(biāo)為(﹣1,﹣2)∵△ABP的面積等于△ABE的面積,∴點(diǎn)E到AB的距離等于2,設(shè)E(a,2),∴a2+a﹣=2解得a1=﹣1﹣2,a2=﹣1+2∴符合條件的點(diǎn)E的坐標(biāo)為(﹣1﹣2,2)或(﹣1+2,2)(3)∵點(diǎn)A(﹣3,0),點(diǎn)B(1,0),∴AB=4若AB為邊,且以A、B、P、F為頂點(diǎn)的四邊形為平行四邊形∴AB∥PF,AB=PF=4∵點(diǎn)P坐標(biāo)(﹣1,﹣2)∴點(diǎn)F坐標(biāo)為(3,﹣2),(﹣5,﹣2)∴平行四邊形的面積=4×2=1若AB為對(duì)角線,以A、B、P、F為頂點(diǎn)的四邊形為平行四邊形∴AB與PF互相平分設(shè)點(diǎn)F(x,y)且點(diǎn)A(﹣3,0),點(diǎn)B(1,0),點(diǎn)P(﹣1,﹣2)∴,∴x=﹣1,y=2∴點(diǎn)F(﹣1,2)∴平行四邊形的面積=×4×4=1綜上所述:點(diǎn)F的坐標(biāo)為(﹣1,2)、(3,﹣2)、(﹣5,﹣2),且平行四邊形的面積為1.【點(diǎn)睛】本題考查待定系數(shù)法求二次函數(shù)解析式及二次函數(shù)的幾何應(yīng)用,分類(lèi)討論并熟練掌握數(shù)形結(jié)合的數(shù)學(xué)思想方法是解題關(guān)鍵.18、(1)A種獎(jiǎng)品每件16元,B種獎(jiǎng)品每件4元.(2)A種獎(jiǎng)品最多購(gòu)買(mǎi)41件.【解析】【分析】(1)設(shè)A種獎(jiǎng)品每件x元,B種獎(jiǎng)品每件y元,根據(jù)“如果購(gòu)買(mǎi)A種20件,B種15件,共需380元;如果購(gòu)買(mǎi)A種15件,B種10件,共需280元”,即可得出關(guān)于x、y的二元一次方程組,解之即可得出結(jié)論;(2)設(shè)A種獎(jiǎng)品購(gòu)買(mǎi)a件,則B種獎(jiǎng)品購(gòu)買(mǎi)(100﹣a)件,根據(jù)總價(jià)=單價(jià)×購(gòu)買(mǎi)數(shù)量結(jié)合總費(fèi)用不超過(guò)900元,即可得出關(guān)于a的一元一次不等式,解之取其中最大的整數(shù)即可得出結(jié)論.【詳解】(1)設(shè)A種獎(jiǎng)品每件x元,B種獎(jiǎng)品每件y元,根據(jù)題意得:,解得:,答:A種獎(jiǎng)品每件16元,B種獎(jiǎng)品每件4元;(2)設(shè)A種獎(jiǎng)品購(gòu)買(mǎi)a件,則B種獎(jiǎng)品購(gòu)買(mǎi)(100﹣a)件,根據(jù)題意得:16a+4(100﹣a)≤900,解得:a≤,∵a為整數(shù),∴a≤41,答:A種獎(jiǎng)品最多購(gòu)買(mǎi)41件.【點(diǎn)睛】本題考查了一元一次不等式的應(yīng)用以及二元一次方程組的應(yīng)用,解題的關(guān)鍵是:(1)找準(zhǔn)等量關(guān)系,正確列出二元一次方程組;(2)根據(jù)不等關(guān)系,正確列出不等式.19、(1)2,2;2,2;(2)+=5;(1)AF=2.【解析】試題分析:(1)∵AF⊥BE,∠ABE=25°,∴AP=BP=AB=2,∵AF,BE是△ABC的中線,∴EF∥AB,EF=AB=,∴∠PFE=∠PEF=25°,∴PE=PF=1,在Rt△FPB和Rt△PEA中,AE=BF==,∴AC=BC=2,∴a=b=2,如圖2,連接EF,同理可得:EF=×2=2,∵EF∥AB,∴△PEF~△ABP,∴,在Rt△ABP中,AB=2,∠ABP=10°,∴AP=2,PB=2,∴PF=1,PE=,在Rt△APE和Rt△BPF中,AE=,BF=,∴a=2,b=2,故答案為2,2,2,2;(2)猜想:a2+b2=5c2,如圖1,連接EF,設(shè)∠ABP=α,∴AP=csinα,PB=ccosα,由(1)同理可得,PF=PA=,PE==,AE2=AP2+PE2=c2sin2α+,BF2=PB2+PF2=+c2cos2α,∴=c2sin2α+,=+c2cos2α,∴+=+c2cos2α+c2sin2α+,∴a2+b2=5c2;(1)如圖2,連接AC,EF交于H,AC與BE交于點(diǎn)Q,設(shè)BE與AF的交點(diǎn)為P,∵點(diǎn)E、G分別是AD,CD的中點(diǎn),∴EG∥AC,∵BE⊥EG,∴BE⊥AC,∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC=2,∴∠EAH=∠FCH,∵E,F(xiàn)分別是AD,BC的中點(diǎn),∴AE=AD,BF=BC,∴AE=BF=CF=AD=,∵AE∥BF,∴四邊形ABFE是平行四邊形,∴EF=AB=1,AP=PF,在△AEH和△CFH中,,∴△AEH≌△CFH,∴EH=FH,∴EQ,AH分別是△AFE的中線,由(2)的結(jié)論得:AF2+EF2=5AE2,∴AF2=5﹣EF2=16,∴AF=2.考點(diǎn):相似形綜合題.20、證明見(jiàn)解析.【解析】

根據(jù)平行線性質(zhì)得出∠A=∠B,根據(jù)SAS證△ACD≌△BEC,推出DC=CE,根據(jù)等腰三角形的三線合一定理推出即可.【詳解】∵AD∥BE,∴∠A=∠B.在△ACD和△BEC中∵,∴△ACD≌△BEC(SAS),∴DC=CE.∵CF平分∠DCE,∴CF⊥DE(三線合一).【點(diǎn)睛】本題考查了全等三角形的性質(zhì)和判定,平行線的性質(zhì),等腰三角形的性質(zhì)等知識(shí)點(diǎn),關(guān)鍵是求出DC=CE,主要考查了學(xué)生運(yùn)用定理進(jìn)行推理的能力.21、(1)購(gòu)進(jìn)甲種紀(jì)念品每件需100元,購(gòu)進(jìn)乙種紀(jì)念品每件需50元.(2)有三種進(jìn)貨方案.方案一:甲種紀(jì)念品60件,乙種紀(jì)念品20件;方案二:甲種紀(jì)念品61件,乙種紀(jì)念品19件;方案三:甲種紀(jì)念品1件,乙種紀(jì)念品18件.(3)若全部銷(xiāo)售完,方案一獲利最大,最大利潤(rùn)是1800元.【解析】分析:(1)設(shè)購(gòu)進(jìn)甲種紀(jì)念品每件價(jià)格為x元,乙種紀(jì)念幣每件價(jià)格為y元,根據(jù)題意得出關(guān)于x和y的二元一次方程組,解方程組即可得出結(jié)論;(2)設(shè)購(gòu)進(jìn)甲種紀(jì)念品a件,根據(jù)題意列出關(guān)于x的一元一次不等式,解不等式得出a的取值范圍,即可得出結(jié)論;(3)找出總利潤(rùn)關(guān)于購(gòu)買(mǎi)甲種紀(jì)念品a件的函數(shù)關(guān)系式,由函數(shù)的增減性確定總利潤(rùn)取最值時(shí)a的值,從而得出結(jié)論.詳解:(1)設(shè)購(gòu)進(jìn)甲種紀(jì)念品每件需x元,購(gòu)進(jìn)乙種紀(jì)念品每件需y元.由題意得:,解得:答:購(gòu)進(jìn)甲種紀(jì)念品每件需100元,購(gòu)進(jìn)乙種紀(jì)念品每件需50元.(2)設(shè)購(gòu)進(jìn)甲種紀(jì)念品a(a≥60)件,則購(gòu)進(jìn)乙種紀(jì)念品(80﹣a)件.由題意得:100a+50(80﹣a)≤7100解得a≤1又a≥60所以a可取60、61、1.即有三種進(jìn)貨方案.方案一:甲種紀(jì)念品60件,乙種紀(jì)念品20件;方案二:甲種紀(jì)念品61件,乙種紀(jì)念品19件;方案三:甲種紀(jì)念品1件,乙種紀(jì)念品18件.(3)設(shè)利潤(rùn)為W,則W=20a+30(80﹣a)=﹣10a+2400所以W是a的一次函數(shù),﹣10<0,W隨a的增大而減?。援?dāng)a最小時(shí),W最大.此時(shí)W=﹣10×60+2400=1800答:若全部銷(xiāo)售完,方案一獲利最大,最大利潤(rùn)是1800元.點(diǎn)睛:本題考查了二元一次方程組的應(yīng)用,一元一次不等式的應(yīng)用,一次函數(shù)的應(yīng)用,找到相應(yīng)的數(shù)量關(guān)系是解決問(wèn)題的關(guān)鍵,注意第二問(wèn)應(yīng)求整數(shù)解,要求學(xué)生能夠運(yùn)用所學(xué)知識(shí)解決實(shí)際問(wèn)題.22、(1)45;(m,﹣m);(2)相似;(3)①;②.【解析】試題分析:(1)由B與C的坐標(biāo)求出OB與OC的長(zhǎng),進(jìn)一步表示出BC的長(zhǎng),再證三角形AOB為等腰直角三角形,即可求出所求角的度數(shù);由旋轉(zhuǎn)的性質(zhì)得,即可確定出A′坐標(biāo);(2)△D′OE∽△ABC.表示出A與B的坐標(biāo),由,表示出P坐標(biāo),由拋物線的頂點(diǎn)為A′,表示出拋物線解析式,把點(diǎn)E坐標(biāo)代入即可得到m與n的關(guān)系式,利用三角形相似即可得證;(3)①當(dāng)E與原點(diǎn)重合時(shí),把A與E坐標(biāo)代入,整理即可得到a,b,m的關(guān)系式;②拋物線與四邊形ABCD有公共點(diǎn),可得出拋物線過(guò)點(diǎn)C時(shí)的開(kāi)口最大,過(guò)點(diǎn)A時(shí)的開(kāi)口最小,分兩種情況考慮:若拋物線過(guò)點(diǎn)C(3m,0),此時(shí)MN的最大值為10,求出此時(shí)a的值;若拋物線過(guò)點(diǎn)A(2m,2m),求出此時(shí)a的值,即可確定出拋物線與四邊形ABCD有公共點(diǎn)時(shí)a的范圍.試題解析:(1)∵B(2m,0),C(3m,0),∴OB=2m,OC=3m,即BC=m,∵AB=2BC,∴AB=2m=0B,∵∠ABO=90°,∴△ABO為等腰直角三角形,∴∠AOB=45°,由旋轉(zhuǎn)的性質(zhì)得:OD′=D′A′=m,即A′(m,﹣m);故答案為45;m,﹣m;(2)△D′OE∽△ABC,理由如下:由已知得:A(2m,2m),B(2m,0),∵,∴P(2m,m),∵A′為拋物線的頂點(diǎn),∴設(shè)拋物線解析式為,∵拋物線過(guò)點(diǎn)E(0,n),∴,即m=2n,∴OE:OD′=BC:AB=1:2,∵∠EOD′=∠ABC=90°,∴△D′OE∽△ABC;(3)①當(dāng)點(diǎn)E與點(diǎn)O重合時(shí),E(0,0),∵拋物線過(guò)點(diǎn)E,A,∴,整理得:,即;②∵拋物線與四邊形ABCD有公共點(diǎn),∴拋物線過(guò)點(diǎn)C時(shí)的開(kāi)口最大,過(guò)點(diǎn)A時(shí)的開(kāi)口最小,若拋物線過(guò)點(diǎn)C(3m,0),此時(shí)MN的最大值為10,∴a(3m)2﹣(1+am)?3m=0,整理得:am=,即拋物線解析式為,由A(2m,2m),可得直線OA解析式為y=x,聯(lián)立拋物線與直線OA解析式得:,解得:x=5m,y=5m,即M(5m,5m),令5m=10,即m=2,當(dāng)m=2時(shí),a=;若拋物線過(guò)點(diǎn)A(2m,2m),則,解得:am=2,∵m=2,∴a=1,則拋物線與四邊形ABCD有公共點(diǎn)時(shí)a的范圍為.考點(diǎn):1.二次函數(shù)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論