




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
測量學
第6章
測量誤差及數據處理的基本知識7/20/2023
1沈陽農業大學第6章測量誤差及數據處理的基本知識
§6.1概述
§6.2測量誤差的種類
§6.3偶然誤差的特性及其概率密度函數
§6.4衡量觀測值精度的指標
§6.5誤差傳播定律
§6.6同精度直接觀測平差
§6.7不同精度直接觀測平差
§6.8
最小二乘法原理及其應用
7/20/2023
2沈陽農業大學
◆測量與觀測值
◆觀測與觀測值的分類
●觀測條件
●等精度觀測和不等精度觀測
●直接觀測和間接觀測
●獨立觀測和非獨立觀測§6.1測量誤差概述7/20/2023
3沈陽農業大學§6.1測量誤差概述
◆測量誤差及其來源●測量誤差的來源(1)儀器誤差:儀器精度的局限、軸系殘余誤差等。(2)人為誤差:判斷力和分辨率的限制、經驗等。(3)外界條件的影響:溫度變化、風、大氣折光等
●
測量誤差的表現形式
●
測量誤差(真誤差=觀測值-真值)(觀測值與真值之差)(觀測值與觀測值之差)返回7/20/2023
4沈陽農業大學例:誤差處理方法
鋼尺尺長誤差ld
計算改正
鋼尺溫度誤差lt
計算改正
水準儀視準軸誤差I
操作時抵消(前后視等距)
經緯儀視準軸誤差C
操作時抵消(盤左盤右取平均)
…………2.系統誤差
——誤差出現的大小、符號相同,或按規律性變化,具有積累性。●系統誤差可以消除或減弱。
(計算改正、觀測方法、儀器檢校)測量誤差分為:粗差、系統誤差和偶然誤差§6.2測量誤差的種類1.粗差(錯誤)——超限的誤差7/20/2023
5沈陽農業大學3.偶然誤差——誤差出現的大小、符號各不相同,表面看無規律性。
例:估讀數、氣泡居中判斷、瞄準、對中等誤差,導致觀測值產生誤差。
●準確度(測量成果與真值的差異)
●最或是值(最接近真值的估值,最可靠值)
●測量平差(求解最或是值并評定精度)4.幾個概念:
●精(密)度(觀測值之間的離散程度)返回7/20/2023
6沈陽農業大學舉例:
在某測區,等精度觀測了358個三角形的內角之和,得到358個三角形閉合差i(偶然誤差,也即真誤差)
,然后對三角形閉合差i
進行分析。
分析結果表明,當觀測次數很多時,偶然誤差的出現,呈現出統計學上的規律性。而且,觀測次數越多,規律性越明顯。§6.3偶然誤差的特性7/20/2023
7沈陽農業大學7/20/2023
8沈陽農業大學用頻率直方圖表示的偶然誤差統計:頻率直方圖的中間高、兩邊低,并向橫軸逐漸逼近,對稱于y軸。頻率直方圖中,每一條形的面積表示誤差出現在該區間的頻率k/n,而所有條形的總面積等于1。各條形頂邊中點連線經光滑后的曲線形狀,表現出偶然誤差的普遍規律
圖6-1誤差統計直方圖7/20/2023
9沈陽農業大學◆從誤差統計表和頻率直方圖中,可以歸納出偶然誤差的四個特性:特性(1)、(2)、(3)決定了特性(4),特性(4)具有實用意義。
3.偶然誤差的特性(1)在一定的觀測條件下,偶然誤差的絕對值不會超過一定的限值(有界性);(2)絕對值小的誤差比絕對值大的誤差出現的機會多(趨向性);(3)絕對值相等的正誤差和負誤差出現的機會相等(對稱性);(4)當觀測次數無限增加時,偶然誤差的算術平均值趨近于零
(抵償性):7/20/2023
10沈陽農業大學偶然誤差具有正態分布的特性當觀測次數n無限增多(n→∞)、誤差區間d無限縮小(d→0)時,各矩形的頂邊就連成一條光滑的曲線,這條曲線稱為“正態分布曲線”,又稱為“高斯誤差分布曲線”。所以偶然誤差具有正態分布的特性。圖6-1誤差統計直方圖返回7/20/2023
11沈陽農業大學1.方差與標準差
由正態分布密度函數式中、為常數;
=2.72828…x=y正態分布曲線(a=0)令:
,上式為:§6.4衡量精度的指標7/20/2023
12沈陽農業大學標準差的數學意義表示的離散程度x=y較小較大稱為標準差:上式中,稱為方差:7/20/2023
13沈陽農業大學測量工作中,用中誤差作為衡量觀測值精度的標準。中誤差:觀測次數無限多時,用標準差表示偶然誤差的離散情形:上式中,偶然誤差為觀測值與真值X之差:觀測次數n有限時,用中誤差m表示偶然誤差的離散情形:i=i-
X7/20/2023
14沈陽農業大學P123表5-27/20/2023
15沈陽農業大學
m1小于m2,說明第一組觀測值的誤差分布比較集中,其精度較高;相對地,第二組觀測值的誤差分布比較離散,其精度較低:
m1=2.7是第一組觀測值的中誤差;
m2=3.6是第二組觀測值的中誤差。7/20/2023
16沈陽農業大學2.容許誤差(極限誤差)
根據誤差分布的密度函數,誤差出現在微分區間d內的概率為:誤差出現在K倍中誤差區間內的概率為:
將K=1、2、3分別代入上式,可得到偶然誤差分別出現在一倍、二倍、三倍中誤差區間內的概率:
P(||m)=0.683=68.3P(||2m)=0.954=95.4P(||3m)=0.997=99.7測量中,一般取兩倍中誤差(2m)作為容許誤差,也稱為限差:|容|=3|m|或|容|=2|m|7/20/2023
17沈陽農業大學
3.相對誤差(相對中誤差)
——誤差絕對值與觀測量之比。
用于表示距離的精度。用分子為1的分數表示。分數值較小相對精度較高;分數值較大相對精度較低。
K2<K1,所以距離S2精度較高。例2:用鋼尺丈量兩段距離分別得S1=100米,m1=0.02m;
S2=200米,m2=0.02m。計算S1、S2的相對誤差。
0.0210.021
K1=——=——;K2=——=——
100500020010000解:返回7/20/2023
18沈陽農業大學一.一般函數的中誤差令的系數為,(c)式為:由于和是一個很小的量,可代替上式中的和:
(c)代入(b)得對(a)全微分:(b)設有函數:為獨立觀測值設有真誤差,函數
也產生真誤差(a)§6.5誤差傳播定律7/20/2023
19沈陽農業大學對Z觀測了k次,有k個式(d)對(d)式中的一個式子取平方:(i,j=1~n且i≠j)(e)對K個(e)式取總和:(f)7/20/2023
20沈陽農業大學(f)(f)式兩邊除以K,得(g)式:(g)由偶然誤差的抵償性知:(g)式最后一項極小于前面各項,可忽略不計,則:<<前面各項即(h)7/20/2023
21沈陽農業大學(h)考慮,代入上式,得中誤差關系式:(6-10)上式為一般函數的中誤差公式,也稱為誤差傳播定律。7/20/2023
22沈陽農業大學
通過以上誤差傳播定律的推導,我們可以總結出求觀測值函數中誤差的步驟:
1.列出函數式;
2.對函數式求全微分;
3.套用誤差傳播定律,寫出中誤差式。7/20/2023
23沈陽農業大學
1.倍數函數的中誤差
設有函數式(x為觀測值,K為x的系數)
全微分得中誤差式例:量得地形圖上兩點間長度
=168.5mm0.2mm,
計算該兩點實地距離S及其中誤差ms:解:列函數式求全微分中誤差式二.幾種常用函數的中誤差
7/20/2023
24沈陽農業大學2.線性函數的中誤差
設有函數式
全微分
中誤差式例:設有某線性函數其中
、
、分別為獨立觀測值,它們的中誤差分別為求Z的中誤差。
解:對上式全微分:由中誤差式得:7/20/2023
25沈陽農業大學
函數式全微分中誤差式3.算術平均值的中誤差式
由于等精度觀測時,,代入上式:得由此可知,算術平均值的中誤差比觀測值的中誤差縮小了倍。
●對某觀測量進行多次觀測(多余觀測)取平均,是提高觀測成果精度最有效的方法。7/20/2023
26沈陽農業大學4.和或差函數的中誤差
函數式:
全微分:
中誤差式:當等精度觀測時:上式可寫成:例:測定A、B間的高差,共連續測了9站。設測量每站高差的中誤差,求總高差的中誤差。
解:
7/20/2023
27沈陽農業大學觀測值函數中誤差公式匯總
觀測值函數中誤差公式匯總
函數式函數的中誤差一般函數倍數函數
和差函數
線性函數
算術平均值
7/20/2023
28沈陽農業大學誤差傳播定律的應用用DJ6經緯儀觀測三角形內角時,每個內角觀測4個測回取平均,可使得三角形閉合差m15
。例1:要求三角形最大閉合差m15,問用DJ6經緯儀觀測三角形每個內角時須用幾個測回??=(1+2+3)-180解:由題意:2m=15,則m=7.5每個角的測角中誤差:由于DJ6一測回角度中誤差為:由角度測量n測回取平均值的中誤差公式:7/20/2023
29沈陽農業大學誤差傳播定律的應用例2:試用中誤差傳播定律分析視距測量的精度。解:(1)測量水平距離的精度
基本公式:
求全微分:
水平距離中誤差:
其中:
7/20/2023
30沈陽農業大學誤差傳播定律的應用例2:試用中誤差傳播定律分析視距測量的精度。解:(2)測量高差的精度基本公式:
求全微分:
高差中誤差:
其中:
7/20/2023
31沈陽農業大學誤差傳播定律的應用例3:(1)用鋼尺丈量某正方形一條邊長為求該正方形的周長S和面積A的中誤差.解:(1)周長,
(2)用鋼尺丈量某正方形四條邊的邊長為其中:求該正方形的周長S和面積A的中誤差.
面積,
周長的中誤差為全微分:面積的中誤差為全微分:7/20/2023
32沈陽農業大學解:(1)周長和面積的中誤差分別為例3:(2)用鋼尺丈量某正方形四條邊的邊長為其中:求該正方形的周長S和面積A的中誤差.
(2)周長;周長的中誤差為面積得周長的中誤差為全微分:但由于返回7/20/2023
33沈陽農業大學▓觀測值的算術平均值(最或是值)▓用觀測值的改正數v計算觀測值的中誤差
(即:白塞爾公式)§6.6同(等)精度直接觀測平差7/20/2023
34沈陽農業大學
一.觀測值的算術平均值(最或是值、最可靠值)
證明算術平均值為該量的最或是值:
設該量的真值為X,則各觀測值的真誤差為1=1-
X2=2-
X
······
n=n-
X對某未知量進行了n次觀測,得n個觀測值1,2,···,n,則該量的算術平均值為:x==1+2+···+nnn上式等號兩邊分別相加得和:L=7/20/2023
35沈陽農業大學當觀測無限多次時:得兩邊除以n:由當觀測次數無限多時,觀測值的算術平均值就是該量的真值;當觀測次數有限時,觀測值的算術平均
值最接近真值。所以,算術平均值是最或是值。L≈X7/20/2023
36沈陽農業大學觀測值改正數特點二.觀測值的改正數v
:以算術平均值為最或是值,并據此計算各觀測值的改正數v,符合[vv]=min的“最小二乘原則”。Vi=L-
i(i=1,2,···,n)特點1——改正數總和為零:對上式取和:以代入:通常用于計算檢核L=
nv=nL-
nv
=n-=0v
=0特點2——[vv]符合“最小二乘原則”:則即vv=(x-)2=min=2(x-)=0dvv
dx∵(x-)=0nx-=0x=
n7/20/2023
37沈陽農業大學精度評定
比較前面的公式,可以證明,兩式根號內的部分是相等的,即在與中:精度評定——用觀測值的改正數v計算中誤差一.計算公式(即白塞爾公式):7/20/2023
38沈陽農業大學證明如下:真誤差:改正數:證明兩式根號內相等對上式取n項的平方和由上兩式得其中:7/20/2023
39沈陽農業大學證明兩式根號內相等中誤差定義:白塞爾公式:7/20/2023
40沈陽農業大學解:該水平角真值未知,可用算術平均值的改正數V計算其中誤差:例:對某水平角等精度觀測了5次,觀測數據如下表,求其算術平均值及觀測值的中誤差。算例1:次數觀測值VVV備注1764249-4162764240+5253764242+394764246-115764248-39平均764245[V]=0[VV]=60764245±1.747/20/2023
41沈陽農業大學距離丈量精度計算例算例2:對某距離用精密量距方法丈量六次,求①該距離的算術平均值;②觀測值的中誤差;③算術平均值的中誤差;④算術平均值的相對中誤差:凡是相對中誤差,都必須用分子為1的分數表示。返回7/20/2023
42沈陽農業大學§6.7不同精度直接觀測平差一、權的概念權是權衡利弊、權衡輕重的意思。在測量工作中權是一個表示觀測結果可靠程度的相對性指標。1權的定義:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030金融數據處理行業產業運行態勢及投資規劃深度研究報告
- 臨床輸血管理制度及流程
- 2025至2030中國炭疽免疫球蛋白行業發展趨勢分析與未來投資戰略咨詢研究報告
- 2025至2030中國水泥硬化劑行業產業運行態勢及投資規劃深度研究報告
- 2025至2030中國殘疾人用車行業市場現狀分析及競爭格局與投資發展報告
- 2025至2030中國橄欖油市場消費預測與投資方向可行性報告
- 2025年美甲師高級(美甲行業市場分析報告解讀與評估)考試試卷案例
- TRIPS協議邊境措施制度:解析、實踐與展望
- 教學督導制度下的地方本科高校教學質量評價研究
- 2025-2030中國自動鈔票分揀機行業發展態勢與應用前景預測報告
- 國家開放大學2025年《創業基礎》形考任務1答案
- 《鼻腔止血材料研究》課件
- 2024年吉林四平事業單位招聘考試真題答案解析
- 建筑設計防火規范
- 2025-2030工程監理行業市場深度分析及競爭格局與投資價值研究報告
- 2024-2025學年度高中物理期中考試卷
- 福州一號線盾構法地鐵工程整體施工組織設計
- GB 10770-2025食品安全國家標準嬰幼兒罐裝輔助食品
- 臨時鍋爐工用工合同標準文本
- 單病種質量管理實施方案
- 旅游保險產品講解
評論
0/150
提交評論