




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
Chapter1:
SemiconductorDiodes全套PPT課件DiodesAdiodeisa2-terminaldevice.Adiodeideallyconductscurrentinonlyonedirection.21.2SemiconductorMaterialsCommonmaterialsusedinthedevelopmentofsemiconductordevices:Silicon(Si)Germanium(Ge)GaAs3Fig.1.3Atomicstructureof(a)silicon;(b)germanium;and(c)galliumandarsenic.Fig.1.4Covalentbondingofthesiliconatom.1.3CovalentBondingandIntrinsicMaterialsThesingle-crystalformedbypuresemiconductormaterialsiscalledintrinsicsemiconductor.IntrinsicSemiconductorsHoles:VacanciesinthecovalentbondElectron-holepairs:afreeelectronandaholeisgeneratedfromthecovalentbondbythermalenergyMovementofHoles:bymovementofcovalentelectronsfromadjacentcovalentbondsTwotypesofchargedparticles(Intrinsiccarriers)inasemiconductorfreeelectronsholesElectricalconductivityofintrinsicsemiconductorsisdeterminedbytheconcentrationoffreeelectronsandholes1.4ExtrinsicMaterials:n-Typeandp-TypeMaterialsTheelectricalcharacteristicsofintrinsicsemiconductorsareimprovedbyaddingimpuritymaterialsinaprocesscalleddoping.
Thematerialscontainingimpurityatomsarecalledextrinsicsemiconductors,ordopedsemiconductors.Therearejusttwotypesofdopedsemiconductormaterials:n-type:impuritiesarefromgroupVelements,e.x.Phosphorusp-type:impuritiesarefromgroupIIIelements,e.x.Boron6N-typeSemiconductorsandCarriersAsemiconductorthatcontainsdonorimpurityatomsiscalledaN-typesemiconductor.Impuritiesinn-typematerialsactasDonorThemajoritycarriersinn-typematerialsareelectrons.Theminoritycarriersinn-typematerialsareholes.Phosphorusimpurityinn-typematerial.P-typeSemiconductorsandCarriersBoronimpurityinp-typematerial.AsemiconductorthatcontainsacceptorimpurityatomsiscalledaP-typesemiconductor.Impuritiesinp-typematerialsactasAcceptorThemajoritycarriersinp-typematerialsareholes.Theminoritycarriersinp-typematerialsare
electrons.n-typesemiconductorp-typesemiconductormajoritycarriers:electronsholesminoritycarriers:holeselectronsmass-actionlaw:ordopingn-typep-typeintrinsicsemiconductorextrinsicsemiconductor1.5
SemiconductorDiodeOneendofasiliconorgermaniumcrystalcanbedopedasap-typematerialandtheotherendasann-typematerial.Theresultisap-njunction.10Theresultistheformationofadepletionregionaroundthejunction.PNAnode(A)Cathode(K)DiodeOperatingConditionsAdiode(orp-njunction)hasthreeoperatingconditions:Nobias11ReversebiasForwardbiasExternalvoltageisappliedacrossthep-njunctionintheoppositepolarityofthep-andn-typematerials.DiodeOperatingConditions:
ReverseBiasReverseBiasThereversevoltagecausesthedepletionlayertowiden.Theelectronsinthen-typematerialareattractedtowardthepositiveterminal.Theholesinthep-typematerialareattractedtowardthenegativeterminal.12DiodeOperatingConditions:ForwardBiasForwardBiasExternalvoltageisappliedacrossthep-njunctioninthesamepolarityasthep-andn-typematerials.Theforwardvoltagecausesthedepletionlayertonarrow.Theelectronsandholesarepushedtowardthep-njunction.Theelectronsandholeshavesufficientenergytocrossthep-njunction.Theforwardbiasvoltagerequired:
silicondiode0.7V
germaniumdiode0.3VI-VCharacteristicsofSemiconductorDiodes14TheZenerregionisinthediode’sreverse-biasregion.Atsomepointthereversebiasvoltageissolargethediodebreaksdownandthereversecurrentincreasesdramatically.ZenerRegionTwomechanismsofelectricalbreakdownAvalanchebreakdownZener
breakdownThemaximumreverse-biasvoltagethatcanbeappliedbeforeenteringtheZenerregioniscalledthePeakInverseVoltage(PIV)orPeakReverseVoltage(PRV)TemperatureEffectsAstemperatureincreasesitaddsenergytothediode.Itreducestherequiredforwardbiasvoltageforforward-biasconduction.Itincreasestheamountofreversecurrentinthereverse-biascondition.Itincreasesmaximumreversebiasavalanchevoltage.Germaniumdiodesaremoresensitivetotemperaturevariationsthansilicondiodes.Semiconductordiodes(/pnjunction)actdifferentlytoDCandACcurrents.Therearethreetypesofresistances:
?
DC,orstatic,resistance
?
AC,ordynamic,resistance
?
AverageACresistance1.7ResistanceLevels17DC,orStatic,ResistanceForaspecificappliedDCvoltageVD,thediodehasaspecificcurrentID,andaspecificresistanceRD.Example1.2
AC,orDynamic,ResistanceExample1.3
TheacresistancedependsonDCoperatingpoint(ID)inthediode.rB
:bodyresistanceandcontactresistance.Itisverysmall(0.1
~2).InsomecasesrBcanbeignored.AC,orDynamic,ResistanceIntheforwardbiasregion:Inthereversebiasregion:Theresistanceisessentiallyinfinite.Thediodeactslikeanopen.1.8DiodeEquivalentCircuits21Therearethreeequivalentcircuitsforadiode:IdealEquivalentCircuitPiecewise-LinearEquivalentCircuitSimplified/ApproximateEquivalentCircuitIdeal
EquivalentCircuitOn-offSwitchConductioninonedirectionPiecewise-Linear
EquivalentCircuit23Simplified
EquivalentCircuitInreversebias,thedepletionlayerisverylarge.Thediode’sstrongpositiveandnegativepolaritiescreatetransition-ordepletion-regioncapacitance,CT.Theamountofcapacitancedependsonthereversevoltageapplied.
Inforwardbiasstoragecapacitanceor
diffusioncapacitance(CD)existsbesidesbarriercapacitanceasthediodevoltageincreases.1.9DiodeCapacitanceVF,forwardvoltageataspecificcurrentandtemperatureIF,maximumforwardcurrentataspecifictemperatureIR,maximumreversecurrentataspecifictemperaturePIVorPRVorV(BR),maximumreversevoltageataspecifictemperaturePowerdissipation,maximumpowerdissipatedataspecifictemperatureC,capacitancelevelsinreversebiastrr,reverserecoverytimeTemperatures,operatingandstoragetemperatureranges1.11DiodeSpecificationSheetsDataaboutadiodeispresenteduniformlyformanydifferentdiodes.Thismakescross-matchingofdiodesforreplacementordesigneasier.
25OtherTypesofDiodesZenerdiodeLight-emittingdiode(LED)PhotodiodeVaractordiodeAZenerisadiodeoperatedinreversebiasattheZenervoltage(VZ).CommonZenervoltagesarebeween1.8Vand200VImportantparametersforZenerDiodes:1.13ZenerDiodeSummaryofChapter1KeyItemsConstructionofap-njunctionCharacteristicsofasemiconductordiode(/p-njunction)-ElectricalconductioninonlyonedirectionDCresistanceandACresistanceEquivalentcircuitsforasemiconductordiodeChapter2:
DiodeApplications292.2Load-LineAnalysisTheloadlineplotsallpossiblecurrent(ID)conditionsforallvoltagesappliedtothediode(VD)inagivencircuit.E/RisthemaximumIDandEisthemaximumVD.WheretheloadlineandthecharacteristiccurveintersectistheQ-point,whichspecifiesaparticularIDandVDforagivencircuit.Load-lineanalysisCharacteristiccurveofthesolid-statedeviceLoadlineofthecircuit2.3EquivalentModelAnalysisConstantsasknownSiliconDiode:VD=0.7VGermaniumDiode:VD=0.3VAnalysisVD=0.7VVR=E–VDID=IR=IT=VR/RForwardBias:E>0.7ReverseBias:E<0.7DiodesideallybehaveasopencircuitsAnalysisVD=EVR=0VID=0AEquivalentModelAnalysis
Step1.Makeassumptions(‘short/forward’or‘open/reverse’)
Step2.Analysis/Checkassumptions
Step3.MakefinaldecisionExample2.4DetermineID,VD2,andVoStep1.MakeAssumptionsStep2.Analysis/CheckassumptionsStep3.Makefinaldecision2.5Half-WaveRectificationThediodeonlyconductswhenitisinforwardbias,thereforeonlyhalfoftheACcyclepassesthroughthediode.TheDCoutputvoltageis0.318Vm,whereVm=thepeakACvoltage.Note:Itisimportantthatthereversebreakdownvoltageratingofthediodebehighenoughtowithstandthepeakreverse-biasingACvoltage:Vm<PIV(orPRV)Usinganidealdiodeequivalent
UsingasimplifieddiodeequivalentExample2.82.6Full-WaveRectificationHalf-wave:Vdc=0.318Vm
Full-wave:Vdc=0.636VmTherectificationprocesscanbeimprovedbyusingmorediodesinafull-waverectifiercircuit.Full-waverectificationproducesagreaterDCoutput:Full-WaveRectificationBridgeRectifierFourdiodesarerequiredVDC=0.636Vm Full-WaveRectificationCenter-TappedTransformerRectifierRequiresTwodiodesCenter-tappedtransformerVDC=0.636(Vm)Example2.92.9ZenerDiodesTheZenerdiodeisoperatedinreversebiasattheZenerVoltage(Vz).WhenVi
VzTheZenerisonVoltageacrosstheZenerisVz
Zenercurrent:IZTheZenerPower:PZ=VZIZWhenVi<VzTheZenerisoffTheZeneractsasanopencircuitStep1.DeterminethestateoftheZenerdiodebyremovingitfromthenetworkandcalculatingthevoltageacrosstheresultingopencircuit.Step2.Substitutetheappropriateequivalentandsolveforthedesiredunknowns.Example2.17.FixedVi,FixedRLExample2.18.FixedVi,VariableRLExample2.19.VariableVi,FixedRLSummaryofChapter2AnalysismethodsofdiodecircuitsEquivalentModelLoad-LineAnalysisApplicationofDiodes
RectifierConversionsofACtoDCforDCoperatedcircuitsBatteryChargingCircuitsZenerDiodes:RegulatorOver
voltageProtectionSettingReferenceVoltages
Clipper/limiter:selfstudy
Clamper:selfstudy…Chapter3:
BipolarJunctionTransistors433.2TransistorConstructionTherearetwotypesoftransistors:pnp
npnTheterminalsarelabeled:E–EmitterB–BaseC–CollectorFeaturesofeachdopedregion:E–
HighlydopedB–
Verynarrow,lowestdopedC–
lowerdoped,largesurfaceTherearetwopnjunctions:Base-EmitterjunctionBase-Collectorjunctionpnpnpn3.3TransistorOperationTherefouroperationmodesdependingonthebiasconditionofeachpnjunction:Emitter-BasejunctionBase-CollectorjunctionActiveoperation(linearamplification)ForwardbiasReversebiasSaturationregionForwardbiasForwardbiasCutoffregionReversebiasReversebiasReverseoperationReversebiasForwardbiasTheactiveoperationregionisnormallyemployedforlinear(undistorted)amplifiers.CurrentsinaTransistorWiththeexternalsources,VEEandVCC,connectedasshownbelow:Theemitter-basejunctionisforwardbiasedThebase-collectorjunctionisreversebiasedThecollectorcurrentiscomprisedoftwocurrents:Emittercurrentisthesumofthecollectorandbasecurrents:PNPNPN3.4Common-BaseConfigurationCB:Thebaseiscommontobothinput(emitter–base)andoutput(collector–base)ofthetransistor.ThreebasicconfigurationsofaBJTaccordingtothecommonterminal:InputterminalCommonterminalOutputterminalCommon-Base(CB)EmitterBaseCollectorCommon-Emitter(CE)BaseEmitterCollectorCommon-Collector(CC)BaseCollectorEmitterCommon-BaseAmplifierInputCharacteristicsThiscurveshowstherelationshipbetweenofinputcurrent(IE)toinputvoltage(VBE)forvariouslevelsofoutputvoltage(VCB).Thisgraphdemonstratestheoutputcurrent(IC)
toanoutputvoltage(VCB)
forvariouslevelsofinputcurrent(IE).OutputCharacteristics
OperatingRegionsCutoffregion—Theamplifierisbasicallyoff.Thereisvoltage,butlittlecurrent.Saturationregion—Theamplifierisfullon.Thereiscurrent,butlittlevoltage.Activeregion—Operatingrangeoftheamplifier.Emitterandcollectorcurrents:Base-emittervoltage:Inactiveregion:ICBO=minoritycollectorcurrent.Thisisusuallysosmallthatitcanbeignored
Ideally:a=1Inreality:aisbetween0.9and0.998Alpha(a)Alpha()relatestheDCcurrentsICandIE:
Alpha()intheACmode:3.6Common–EmitterConfigurationCE:Theemitteriscommontobothinput(base-emitter)andoutput(collector-emitter).Theinputisonthebaseandtheoutputisonthecollector.Common-EmitterCharacteristicsBaseCharacteristicsInputCharacteristicsThiscurveshowstherelationshipbetweenofinputcurrent(IB)toinputvoltage(VBE)forvariouslevelsofoutputvoltage(VCE).CollectorCharacteristicsThisgraphdemonstratestheoutputcurrent(IC)
toanoutputvoltage(VCE)
forvariouslevelsofinputcurrent(IB).OutputCharacteristicsCommon-EmitterAmplifierCurrentsIdealCurrentsIE
=IC
+IB
IC
=IE
ActualCurrentsIC=IE+ICBOWhenIB=0Athetransistorisincutoff,butthereissomeminoritycurrentflowingcalledICEO.whereICBO=minoritycollectorcurrent.Thisisusuallysosmallthatitcanbeignored,exceptinhighpowertransistorsandinhightemperatureenvironments.Beta()InDCmode:InACmode:representstheamplificationfactorofatransistor.(issometimesreferredtoashfe,atermusedintransistormodelingcalculations)54DeterminingfromaGraphBeta()Note:AC
≈
DCRelationshipbetweenamplificationfactorsandBeta()RelationshipBetweenCurrents563.7Common–CollectorConfigurationCC:Thecollectoriscommontobothinput(base-collector)andoutput(emitter-collector).Theinputisonthebaseandtheoutputisontheemitter.Thecharacteristicsaresimilartothoseofthecommon-emitterconfiguration,excepttheverticalaxisisIE.VCEisatmaximumandICisatminimum(ICmin=ICEO)inthecutoffregion.ICisatmaximumandVCEisatminimum(VCEmin=VCEsat=VCEO)inthesaturationregion.Thetransistoroperatesintheactiveregionbetweensaturationandcutoff.3.8LimitationsofOperationCommon-emitter:CEConfigurationmore…3.9TransistorSpecificationSheetSummaryofChapter3
KeyInformationTransistorconstructionandoperationCurrentrelationship
ThreeBasicConfigurations:CECBCCCharacteristicsofCE,CBandCCconfigurationTransistorOperationRegionsActiveregionCutoffregionSaturationregion
ApplicationKeyNotesLimitsofOperationChapter4:
DCBiasing–BJTsBiasingBiasing
referstotheDCvoltagesappliedtoatransistorinordertoturnitonsothatitcanamplifytheACsignal.ToprovideenergyforamplificationToprovideaproperresponsetoaninputACsignalbydeterminingtheoperatingpointDCandACresponsearedifferent,soDCanalysiscanbetotallyseparatedfromtheacresponseThechoiceofparametersforDClevelswillaffecttheACresponse,andviceversaNonlinearDevices4.2OperatingPointTheDCinputestablishesanoperatingorquiescentpointcalledtheQ-point.
ActiveorLinearRegionOperationBase–EmitterjunctionisforwardbiasedBase–Collectorjunctionisreversebiased
CutoffRegionOperationBase–Emitterjunctionisreversebiased
SaturationRegionOperationBase–EmitterjunctionisforwardbiasedBase–CollectorjunctionisforwardbiasedBiasingandThreeStatesofOperationFixed-biascircuitEmitter-stabilizedbiascircuitVoltagedividerbiascircuitDCbiaswithvoltagefeedbackDCBiasingCircuits4.3FixedBiasCircuitSketchingtheDCequivalentisthefirststepforDCanalysis:Replacingthecapacitorwithanopen-circuitequivalent.Replacingtheinductorwithashort-circuitequivalent.DCsupplycanbeseparatedforanalysispurposeonlyMathematicalAnalysisFromKirchhoff’svoltagelaw:Solvingforthebasecurrent:+VCC–IBRB–VBE=0Base-emitterloopThecollectorcurrentisgivenby:FromKirchhoff’svoltagelaw:Collector-emitterloopTransistorSaturationWhenthetransistorisoperatinginthesaturationregion,itisconductingatmaximumcurrentflowthroughthetransistor.TransistorSaturationLevelLoadLineAnalysisICsatIC=VCC/RCVCE=0VVCEcutoffVCE=VCCIC=0mAwherethevalueofRBsetsthevalueofIBwhereIBandtheloadlineintersectthatsetsthevaluesofVCEandICTheQ-pointistheparticularoperatingpoint:Theendpointsoftheloadlineare:LoadequationbyKVL:CircuitValuesAffecttheQ-Pointmore…4.4Emitter-StabilzedBiasCircuitStability
referstoabiascircuitinwhichthecurrentsandvoltageswillremainfairlyconstantforawiderangeoftemperaturesandtransistorBeta()values.Addingaresistor(RE)totheemitterimprovesthestabilityofatransistor.ImprovedBiasedStability
MathematicalAnalysis
FromKirchhoff’svoltagelaw:SinceIE=(b+1)IB:SolvingforIB:FromKirchhoff’svoltagelaw:SinceIE
IC:Also:Collector-EmitterLoop
Base-EmitterLoop
Thecollectorcurrentisgivenby:TheroleofRE?
LoadlineAnalysis
VCEcutoff:
ICsat:Theendpointscanbedeterminedfromtheloadline.LoadequationbyKVL:4.5VoltageDividerBiasThisisaverystablebiascircuit.Thecurrentsandvoltagesarealmostindependentof
variationsin.ApproximateAnalysis
WhereIB<<I1andI2andI1
I2:WherebRE
>10R2:FromKirchhoff’svoltagelaw:4.6DCBiaswithVoltageFeedback
Anotherwaytoimprovethestabilityofabiascircuitistoaddafeedbackpathfromcollectortobase.InthisbiascircuittheQ-pointisonlyslightlydependentonthetransistorbeta,.Base-EmitterLoopFromKirchhoff’svoltagelaw:WhereIB<<IC:KnowingIC=IBandIE
IC,the
loopequationbecomes:SolvingforIB:ApplyingKirchoff’svoltagelaw:IERE+VCE+ICRC–VCC=0SinceIC
ICandIC=IB:IC(RC+RE)+VCE–VCC=0SolvingforVCE:VCE=VCC–IC(RC+RE)Base-EmitterLoopCollector-EmitterLoop4.8TransistorSwitchingNetworksTransistorswithonlytheDCsourceappliedcanbeusedaselectronicswitches.ICissensitiveto,temperature,VBE,andICO4.10BiasStabilizationSummaryofChapter4
Note:
Theanalysisforpnptransistorbiasingcircuitsisthesameasthatfornpntransistorcircuits.Theonlydifferenceisthatthecurrentsareflowingintheoppositedirection.DCanalysis:DCequivalentcircuitMathematicalanalysis(VBE=.7V)Load-lineanalysisTypicalDCbiasingcircuitsFixed-biascircuitEmitter-stabilizedbiascircuitVoltagedividerbiascircuitDCbiaswithvoltagefeedbackFactorsaffectingbiasstability79Chapter5:
BJTACAnalysis805.3BJTTransistorModelingAmodelisanequivalentcircuitthatrepresentstheACcharacteristicsofthetransistor.Amodelusescircuitelementsthatapproximatethebehaviorofthetransistor.TherearethreemodelscommonlyusedinsmallsignalACanalysisofatransistor:remodelHybridequivalentmodelHybrid∏modelACnetworkACequivalentcircuitSketchanACnetwork:RemoveDCsupplies(replacedbyshort)Thecouplingcapacitorandbypasscapacitorcanbereplacedbyashort815.4ThereTransistorModelBJTsarebasicallycurrent-controlleddevices,thereforetheremodelusesadiodeandacurrentsourcetoduplicatethebehaviorofthetransistor.OnedisadvantagetothismodelisitssensitivitytotheDClevel.Thismodelisdesignedforspecificcircuitconditions.82Common-BaseConfigurationInputimpedance:LowOutputimpedance:HighVoltagegain:voltageamplificationCurrentgain:NocurrentamplificationremodelforCBconfiguration83Common-EmitterConfigurationThedioderemodelcanbereplacedbytheresistorre.Usethecommon-emittermodelforthecommon-collectorconfiguration.remodelforCEconfigurationInputimpedance:higherthanCBOutputimpedance:lowerthanCBVoltagegain:Voltageamplification,VoandViare180°outofphaseCurrentgain:Currentamplificationremodelrequiresyoutodetermine,re,andro.845.5TheHybridEquivalentModelThefollowinghybridparametersaredevelopedandusedformodelingthetransistor.Theseparameterscanbefoundinaspecificationsheetforatransistor.hi=inputresistancehr=reversetransfervoltageratio(Vi/Vo)0
hf=forwardtransfercurrentratio(Io/Ii)ho=outputconductance
hi=inputresistancehr=reversetransfervoltageratio(Vi/Vo)0
hf=forwardtransfercurrentratio(Io/Ii)ho=outputconductance
SimplifiedGeneralH-ParameterModel:Approximatehybridequivalentmodel85re
Modelvs.h-ParameterModelCommon-EmitterCommon-Base865.6TheHybridpModelThehybridpmodelismostusefulforanalysisofhigh-frequencytransistorapplications.Atlowerfrequenciesthehybridpmodelcloselyapproximatethereparameters,andcanbereplacedbythem.87ACAnalysiswithEquivalentmodelsSection5.8CEwithfix-biasSection5.9CEwithvoltage-dividerbiasSection5.10CEwithemitterbiasSection5.14CEwithdccollectorfeedbackbiasSection5.13CEwithcollectorfeedbackSection5.11CC:EmitterfollowerSection5.12CBACequivalentcircuitwithremodelCalculate:ImpedanceInputimpedanceOutputimpedanceGainVoltagegainCurrentgainDCanalysistodeterminere
AmplificationcircuitACunknownsCE885.8Common-EmitterFixed-BiasConfigurationACnetworkACequivalentwithremodelTheinputisappliedtothebaseTheoutputisfromthecollectorHighinputimpedanceLowoutputimpedanceHighvoltageandcurrentgainPhaseshiftbetweeninputandoutputis18089Common-EmitterFixed-BiasCalculationsCurrentgainfromvoltagegain:Inputimpedance:Outputimpedance:Voltagegain:Currentgain:CEamplifiers:HighinputimpedanceLowoutputimpedanceHighvoltageandcurrentgainPhaseshiftbetweeninputandoutputis180905.9Common-EmitterVoltage-DividerBiasremodelrequiresyoutodetermine,re,andro.Inputimpedance:Outputimpedance:Voltagegain:Currentgainfromvoltagegain:Currentgain:915.10Common-EmitterEmitter-BiasConfiguration
(UnbypassedRE)Inputimpedance:Outputimpedance:Voltagegain:Currentgain:Currentgainfromvoltagegain:92Inputimpedance:Outputimpedance:Voltagegain:Currentgain:Thisisavariationofthecommon-emitterfixed-biasconfigurationInputisappliedtothebaseOutputistakenfromthecollectorThereisa180phaseshiftbetweeninputandoutput5.13Common-EmitterCollectorFeedbackConfiguration935.14CollectorDCFeedbackConfiguration945.11Emitter-FollowerConfiguration(CC)Emitter-followerisalsoknownasthecommon-collectorconfiguration.Theinputisappliedtothebaseandtheoutputistakenfromtheemitter.Thereisnophaseshiftbetweeninputandoutput.Inputimpedance:Outputimpedance:Voltagegain:Currentgain:Currentgainfromvoltagegain:955.12Common-BaseConfigurationTheinputisappliedtotheemitter.Theoutputistakenfromthecollector.Lowinputimpedance.Highoutputimpedance.Currentgainlessthanunity.Veryhighvoltagegain.Nophaseshiftbetweeninputandoutput.Inputimpedance:Outputimpedance:Voltagegain:Currentgain:965.17Two-PortSystemsApproachThisapproach:Reducesacircuittoatwo-portsystemProvidesa“Théveninlook”attheoutputterminalsMakesiteasiertodeterminetheeffectsofachangingloadWithVisetto0V:Thevoltageacrosstheopenterminalsis:whereAvNListheno-loadvoltagegain.
975.16EffectofLoadImpedanceonGainThismodelcanbeappliedtoanycurrent-orvoltage-controlledamplifier.Addingaloadreducesthegainoftheamplifier:985.16EffectofSourceImpedanceonGainThefractionofappliedsignalthatreachestheinputoftheamplifieris:Theinternalresistanceofthesignalsourcereducestheoverallgain:995.16CombinedEffectsofRSandRLonVoltageGainEffectsofRL:EffectsofRLandRS:1005.19CascadedSystemsTheoutputofoneamplifieristheinputtothenextamplifierTheoverallvoltagegainisdeterminedbytheproductofgainsoftheindividualstagesTheDCbiascircuitsareisolatedfromeachotherbythecouplingcapacitorsTheDCcalculationsareindependentofthecascadingTheACcalculationsforgainandimpedanceareinterdependentareloadedgains101R-CCoupledBJTAmplifiersInputimpedance,firststage:Outputimpedance,secondstage:Voltagegain:102CascodeConnection:CE–CBThisexampleisaCE–CBcombination.Thisarrangementprovideshighinputimpedancebutalowvoltagegain.ThelowvoltagegainoftheinputstagereducestheMillerinputcapacitance,makingthiscombinationsuitableforhigh-frequencyapplications.1035.20DarlingtonConnectionTheDarlingtoncircuitprovidesaveryhighcurrentgain—theproductoftheindividualcurrentgains:bD=b1b2Thepracticalsignificanceisthatthecircuitprovidesaveryhighinputimpedance.5.21FeedbackPairThisisatwo-transistorcircuitthatoperateslikeaDarlingtonpair,butitisnotaDarlingtonpair.Ithassimilarcharacteristics:HighcurrentgainLowVoltagegain(nearunity)LowoutputimpedanceHighinputimpedanceThedifferenceisthataDarlingtonusesapairofliketransistors,whereasthefeedback-pairconfigurationusescomplementarytransistors.bD=b1b2PNP1045.22CurrentMirrorCircuitsCurrentmirrorcircuitsprovideconstantcurrentinintegratedcircuits.Currentmirrorcircuitwithhigheroutputimpedance.1055.23CurrentSourceCircuitsConstant-currentsourcescanbebuiltusingFETs,BJTs,andcombinationsofthesedevices.IE
IC106SummaryofChapter5ACanalysisLoadlineanalysisMathematicalanalysisbysmallsignalmodelACanalysismethodbysmallsignalmodelDCanalysistodeterminereACequivalentcircuitbyremodelCalculationimpedanceandgainCEamplifierCBamplifierCCamplifierCascadedamplifiersystemEffectofRsandRLCE-CBChapter6:
Field-EffectTransistorsFETs(Field-EffectTransistors)aremuchlikeBJTs(BipolarJunctionTransistors).Similarities:?Amplifiers ?Switchingdevices ?ImpedancematchingcircuitsDifferences:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年第一季度煙花爆竹安全作業特種作業操作證考試試卷(新手實戰卷)
- 2025年小學教師資格考試《綜合素質》教育創新實踐題模擬(含答案)
- 可愛的小貓寫物作文12篇
- 2025年網關項目立項申請報告模板
- 2025年磨工(技師)考試試卷:磨削加工行業競爭態勢分析
- 2025年安全評價師(初級)安全評價報告撰寫試題
- 市場營銷策略實施成果證明(6篇)
- 2025年文職人員招聘考試公共科目試卷六十三:軍事裝備研發
- 2025年中學教師資格考試《綜合素質》教育研究方法綜合能力測試試卷(含答案)
- 正式工作證明及職業背景詳情展示(6篇)
- 2025年廣西文化和旅游廳所屬事業單位招聘考試備考題庫
- 土木工程力學(本)-001-國開機考復習資料
- 2024屆清華大學強基計劃數學學科筆試試題(附答案)
- GB/T 9126.1-2023管法蘭用非金屬平墊片第1部分:PN系列
- 早產兒出院后喂養(課堂PPT)
- 英語的起源與發展(課堂PPT)
- 福建省中小學教師職務考評登記表
- 北京市中級專業技術資格評審申報表
- 鼠害蟲害防治管理制度
- 整體yuan yin yun yingp
- PLM_項目建議書_PTC
評論
0/150
提交評論