




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
教學(xué)設(shè)計教學(xué)目標:1.經(jīng)歷探索簡單圖形軸對稱的過程,進一步體驗軸對稱的特征,發(fā)展空間觀念。2.探索并掌握等腰三角形的軸對稱性及其相關(guān)性質(zhì)。3.通過學(xué)生的操作與思考,使學(xué)生掌握等腰三角形和等邊三角形的軸對稱性及其有關(guān)性質(zhì),從而發(fā)展空間觀念。重點難點:探索并掌握等腰三角形的軸對稱性及其相關(guān)性質(zhì)。發(fā)展空間觀念教學(xué)環(huán)節(jié)如下:第一環(huán)節(jié)知識回顧提問:觀察下列各種圖形,判斷是不是軸對稱圖形,能找出對稱軸嗎?目的:通過問題,希望學(xué)生能回憶起前兩節(jié)所學(xué)內(nèi)容,培養(yǎng)學(xué)生善于觀察圖形、樂于探索研究的學(xué)習(xí)品質(zhì)及全面思考的能力。第二環(huán)節(jié)創(chuàng)設(shè)情境導(dǎo)入新課活動內(nèi)容:1.認識等腰三角形。給出三種等腰三角形的形狀,包括銳角、鈍角、直角形狀的圖形。2.介紹等腰三角形的概念及各部分名稱。給出生活中含有等腰三角形的建筑物圖片,生活中的實例隨處可見,給學(xué)生們呈現(xiàn)最直觀的現(xiàn)象。如艾菲爾鐵塔、埃及金字塔等。目的:牢固而扎實的掌握等腰三角形的有關(guān)概念,尤其是等腰三角形的形狀的分類,對于解決有關(guān)計算中多值問題大有助益,另外,等腰三角形的概念實際上也是它的一個有用性質(zhì),無論是在計算還是證明中都有很大的作用。第三環(huán)節(jié)動手操作探求新知提問:等腰三角形是一種特殊的三角形,它除具有一般三角形的性質(zhì)外,還有一些特殊的性質(zhì)嗎?拿出你的等腰三角形紙片,把紙片折折看,你能發(fā)現(xiàn)什么現(xiàn)象嗎?1.思考(1)等腰三角形是軸對稱圖形嗎?找出對稱軸。(2)頂角的平分線所在的直線是等腰三角形的對稱軸嗎?(3)底邊上的中線所在的直線是等腰三角形的對稱軸嗎?底邊上的高呢?(4)沿對稱軸折疊,你能發(fā)現(xiàn)等腰三角形的哪些特征?2.歸納(1)等腰三角形是軸對稱圖形。(2)∠B=∠C(3)∠BAD=∠CAD,AD為頂角的平分線(4)∠ADB=∠ADC=90°AD為底邊上的高(5)BD=CD,AD為底邊上的中線。等腰三角形的特征:1).等腰三角形是軸對稱圖形2).等腰三角形的頂角平分線、底邊上的中線、底邊上的高重合(也稱“三線合一”),它們所在的直線都是等腰三角形的對稱軸。3).等腰三角形的兩個底角相等。3.推理等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(也稱為“三線合一”).證明:因為AD是角平分線,所以∠BAD=∠CAD在ΔABD和ΔACD中,因為AB=AC,∠BAD=∠CAD,AD=AD所以ΔABD≌ΔACD所以BD=CD,∠ADB=∠ADC=90?所以AD是ΔABC的角平分線、底邊上的中線、底邊上的高。目的:探索等腰三角形的軸對稱性及其有關(guān)性質(zhì),教學(xué)時,可以讓學(xué)生先動手折一折等腰三角形紙片,自己發(fā)現(xiàn)有哪些結(jié)論。然后小組成員一起通過操作驗證自己的結(jié)論,并由此歸納現(xiàn)象,探索等腰三角形的有關(guān)特征。第四環(huán)節(jié)知識延伸提問:1.等邊三角形的有關(guān)概念有幾條對稱軸?2.你能發(fā)現(xiàn)等邊三角形的哪些特征?目的:教師應(yīng)鼓勵學(xué)生通過操作和思考分析等邊三角性的軸對稱性,并盡可能多的探索它的特征。第五環(huán)節(jié)知識逆用提問:你有哪些方法可以得到一個等腰三角形?與同伴交流。1.折紙:將長方形紙片對折,沿對角線折疊,再沿折痕展開。2.利用圓規(guī)目的:以動手操作的形式得出一個等腰三角形,鼓勵學(xué)生充分的進行交流,充分利用等腰三角形的特征,逆向思維,達到學(xué)以致用的目的。同時充分體現(xiàn)了數(shù)學(xué)來源于生活,同時也更好的服務(wù)于生活的理念。第六環(huán)節(jié)練習(xí)與提高活動內(nèi)容:以小組競賽的方式做習(xí)題:1.在等腰ΔABC中,AB=AC頂角∠A=100°那么底角∠B=_______∠C=_______.2.在△ABC中,AB=AC,∠B=72°,那么∠A=______3.在等腰三角形△ABC中,有一個角為50°,那么另外兩個角分別是多少?4.如圖,在△ABC中,AB=AC時,(1)因為AD⊥BC所以∠____=∠_____;____=____(2)因為AD是中線所以____⊥____;∠_____=∠_____(3)因為AD是角平分線所以____⊥____;_____=____小組競賽試題:每一幅圖畫后面都有一道習(xí)題,選擇一幅你喜歡的圖畫吧!如果ΔABC是軸對稱圖形,則它的對稱軸一定是()A.某一條邊上的高。B.某一條邊上的中線。C.平分一角和這個角的對邊的直線。D.某一個角的平分線。①若等腰三角形的一個內(nèi)角為40°,則它的另外兩個內(nèi)角為________。②若等腰三角形的一個內(nèi)角為120°,則它的另外兩個內(nèi)角為______3、①一等腰三角形的兩邊長為2和4,則該等腰三角形的周長為________②一等腰三角形的兩邊長為3和4,則該等腰三角形的周長為________4、已知等腰三角形的腰長比底邊長多2cm,并且它的周長為16cm,求這個等腰三角形的各邊長。5、拓展提高:如圖,P,Q是△ABC邊上的兩點,且BP=PQ=QC=AP=AQ,求∠BAC的度數(shù)。AAPBCQ活動目的:通過點擊圖片,得到習(xí)題,增加樂趣,調(diào)動積極性,增強參與意識,促進學(xué)生學(xué)習(xí)興趣,習(xí)題以選擇填空題為主,簡單精練。第七環(huán)節(jié):課堂小結(jié)內(nèi)容:師生互相交流總結(jié)本節(jié)所學(xué),等腰三角形的性質(zhì)和等邊三角形的性質(zhì),以及在習(xí)題中出現(xiàn)的解題方法。目的:鼓勵學(xué)生結(jié)合本節(jié)課的學(xué)習(xí),談自己的收獲與感想(學(xué)生暢所欲言,教師給予鼓勵)教學(xué)設(shè)計教學(xué)目標:1.經(jīng)歷探索簡單圖形軸對稱的過程,進一步體驗軸對稱的特征,發(fā)展空間觀念。2.探索并掌握等腰三角形的軸對稱性及其相關(guān)性質(zhì)。3.通過學(xué)生的操作與思考,使學(xué)生掌握等腰三角形和等邊三角形的軸對稱性及其有關(guān)性質(zhì),從而發(fā)展空間觀念。重點難點:探索并掌握等腰三角形的軸對稱性及其相關(guān)性質(zhì)。發(fā)展空間觀念教學(xué)環(huán)節(jié)如下:第一環(huán)節(jié)知識回顧提問:觀察下列各種圖形,判斷是不是軸對稱圖形,能找出對稱軸嗎?目的:通過問題,希望學(xué)生能回憶起前兩節(jié)所學(xué)內(nèi)容,培養(yǎng)學(xué)生善于觀察圖形、樂于探索研究的學(xué)習(xí)品質(zhì)及全面思考的能力。第二環(huán)節(jié)創(chuàng)設(shè)情境導(dǎo)入新課活動內(nèi)容:1.認識等腰三角形。給出三種等腰三角形的形狀,包括銳角、鈍角、直角形狀的圖形。2.介紹等腰三角形的概念及各部分名稱。給出生活中含有等腰三角形的建筑物圖片,生活中的實例隨處可見,給學(xué)生們呈現(xiàn)最直觀的現(xiàn)象。如艾菲爾鐵塔、埃及金字塔等。目的:牢固而扎實的掌握等腰三角形的有關(guān)概念,尤其是等腰三角形的形狀的分類,對于解決有關(guān)計算中多值問題大有助益,另外,等腰三角形的概念實際上也是它的一個有用性質(zhì),無論是在計算還是證明中都有很大的作用。第三環(huán)節(jié)動手操作探求新知提問:等腰三角形是一種特殊的三角形,它除具有一般三角形的性質(zhì)外,還有一些特殊的性質(zhì)嗎?拿出你的等腰三角形紙片,把紙片折折看,你能發(fā)現(xiàn)什么現(xiàn)象嗎?1.思考(1)等腰三角形是軸對稱圖形嗎?找出對稱軸。(2)頂角的平分線所在的直線是等腰三角形的對稱軸嗎?(3)底邊上的中線所在的直線是等腰三角形的對稱軸嗎?底邊上的高呢?(4)沿對稱軸折疊,你能發(fā)現(xiàn)等腰三角形的哪些特征?2.歸納(1)等腰三角形是軸對稱圖形。(2)∠B=∠C(3)∠BAD=∠CAD,AD為頂角的平分線(4)∠ADB=∠ADC=90°AD為底邊上的高(5)BD=CD,AD為底邊上的中線。等腰三角形的特征:1).等腰三角形是軸對稱圖形2).等腰三角形的頂角平分線、底邊上的中線、底邊上的高重合(也稱“三線合一”),它們所在的直線都是等腰三角形的對稱軸。3).等腰三角形的兩個底角相等。3.推理等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(也稱為“三線合一”).證明:因為AD是角平分線,所以∠BAD=∠CAD在ΔABD和ΔACD中,因為AB=AC,∠BAD=∠CAD,AD=AD所以ΔABD≌ΔACD所以BD=CD,∠ADB=∠ADC=90?所以AD是ΔABC的角平分線、底邊上的中線、底邊上的高。目的:探索等腰三角形的軸對稱性及其有關(guān)性質(zhì),教學(xué)時,可以讓學(xué)生先動手折一折等腰三角形紙片,自己發(fā)現(xiàn)有哪些結(jié)論。然后小組成員一起通過操作驗證自己的結(jié)論,并由此歸納現(xiàn)象,探索等腰三角形的有關(guān)特征。第四環(huán)節(jié)知識延伸提問:1.等邊三角形的有關(guān)概念有幾條對稱軸?2.你能發(fā)現(xiàn)等邊三角形的哪些特征?目的:教師應(yīng)鼓勵學(xué)生通過操作和思考分析等邊三角性的軸對稱性,并盡可能多的探索它的特征。第五環(huán)節(jié)知識逆用提問:你有哪些方法可以得到一個等腰三角形?與同伴交流。1.折紙:將長方形紙片對折,沿對角線折疊,再沿折痕展開。2.利用圓規(guī)目的:以動手操作的形式得出一個等腰三角形,鼓勵學(xué)生充分的進行交流,充分利用等腰三角形的特征,逆向思維,達到學(xué)以致用的目的。同時充分體現(xiàn)了數(shù)學(xué)來源于生活,同時也更好的服務(wù)于生活的理念。第六環(huán)節(jié)練習(xí)與提高活動內(nèi)容:以小組競賽的方式做習(xí)題:1.在等腰ΔABC中,AB=AC頂角∠A=100°那么底角∠B=_______∠C=_______.2.在△ABC中,AB=AC,∠B=72°,那么∠A=______3.在等腰三角形△ABC中,有一個角為50°,那么另外兩個角分別是多少?4.如圖,在△ABC中,AB=AC時,(1)因為AD⊥BC所以∠____=∠_____;____=____(2)因為AD是中線所以____⊥____;∠_____=∠_____(3)因為AD是角平分線所以____⊥____;_____=____小組競賽試題:每一幅圖畫后面都有一道習(xí)題,選擇一幅你喜歡的圖畫吧!如果ΔABC是軸對稱圖形,則它的對稱軸一定是()A.某一條邊上的高。B.某一條邊上的中線。C.平分一角和這個角的對邊的直線。D.某一個角的平分線。①若等腰三角形的一個內(nèi)角為40°,則它的另外兩個內(nèi)角為________。②若等腰三角形的一個內(nèi)角為120°,則它的另外兩個內(nèi)角為______3、①一等腰三角形的兩邊長為2和4,則該等腰三角形的周長為________②一等腰三角形的兩邊長為3和4,則該等腰三角形的周長為________4、已知等腰三角形的腰長比底邊長多2cm,并且它的周長為16cm,求這個等腰三角形的各邊長。5、拓展提高:如圖,P,Q是△ABC邊上的兩點,且BP=PQ=QC=AP=AQ,求∠BAC的度數(shù)。AAPBCQ活動目的:通過點擊圖片,得到習(xí)題,增加樂趣,調(diào)動積極性,增強參與意識,促進學(xué)生學(xué)習(xí)興趣,習(xí)題以選擇填空題為主,簡單精練。第七環(huán)節(jié):課堂小結(jié)內(nèi)容:師生互相交流總結(jié)本節(jié)所學(xué),等腰三角形的性質(zhì)和等邊三角形的性質(zhì),以及在習(xí)題中出現(xiàn)的解題方法。目的:鼓勵學(xué)生結(jié)合本節(jié)課的學(xué)習(xí),談自己的收獲與感想(學(xué)生暢所欲言,教師給予鼓勵)效果分析第一環(huán)節(jié):學(xué)生大部分能夠準確而全面的找出對稱軸,并能說出部分圖標的標志名稱。以生活中的事例入題,大大提高了學(xué)生的學(xué)習(xí)興趣,也由此告知學(xué)生數(shù)學(xué)來源于生活的道理。第二環(huán)節(jié):學(xué)生在一個開放的環(huán)境下展示、接觸生活中的等腰三角形,從中獲取了信息,感受生活中的事例。而且講解中圖形生動形象,使概念的獲取更加全面。第三環(huán)節(jié):(1)學(xué)生可能在回答此問題時表現(xiàn)出差異,有的學(xué)生可能從分析等腰三角形特點的基礎(chǔ)上直接想象出它的對稱軸,有的學(xué)生可能需要借助折疊等活動尋找出對稱軸,教師要鼓勵學(xué)生進行充分的交流,注重操作和思考的有機結(jié)合,對于通過想象解決問題的學(xué)生,鼓勵他們通過操作進行驗證,對于通過操作得出結(jié)論的學(xué)生,鼓勵他們重新觀察等腰三角形的軸對稱性。對于對稱軸的描述,學(xué)生可能有不同的回答,有的學(xué)生可能回答是頂角平分線所在直線,有的學(xué)生可能回答是底邊上的中線或高所在直線,教師此時提出問題:“你們所說的是同一條直線嗎?”引出下兩題的討論。(2)鼓勵學(xué)生在操作中盡可能多的探索等腰三角形的特征,并盡量運用自己的語言說明理由,既可以根據(jù)折疊過程中某些線段或角重合說明,也可以用全等來說明。對于學(xué)生可能探索出來的結(jié)論,應(yīng)鼓勵交流,但對于全體學(xué)生而言,只要求掌握教科書中列出的特征。第四環(huán)節(jié):學(xué)生可能運用不同的辦法解決這個問題,有的學(xué)生可能借助操作,有的學(xué)生可能通過等邊三角形的特殊性由等腰三角形的性質(zhì)推知它的特征。教師應(yīng)鼓勵學(xué)生進行充分的交流。第五環(huán)節(jié):知識點掌握牢固,課堂氣氛熱烈。第六環(huán)節(jié):學(xué)生暢所欲言自己的切身感受與實際收獲,在豐富的現(xiàn)實情景中,觀察生活中的軸對稱現(xiàn)象,體會了軸對稱在現(xiàn)實生活中的廣泛應(yīng)用和豐富的文化價值。教材分析簡單的軸對稱圖形是義務(wù)教育數(shù)學(xué)課程的重要內(nèi)容,是學(xué)生學(xué)習(xí)和順利解決有關(guān)數(shù)學(xué)問題的基礎(chǔ),在現(xiàn)實生活中有著廣泛的應(yīng)用。我區(qū)使用北師大版數(shù)學(xué)教科書,此內(nèi)容在七年級下冊第二課時中,重點是探索角和線段的軸對稱性,使學(xué)生經(jīng)歷知識的探索、形成和運用過程。教科書基于學(xué)生對軸對稱圖形的認識,提出了本課的具體學(xué)習(xí)任務(wù),認識等腰三角形和等邊三角形的軸對稱性及其有關(guān)性質(zhì)。本節(jié)課的教學(xué)目標是:1.經(jīng)歷探索簡單圖形軸對稱的過程,進一步體驗軸對稱的特征,發(fā)展空間觀念。2.探索并掌握等腰三角形的軸對稱性及其相關(guān)性質(zhì)。3.通過學(xué)生的操作與思考,使學(xué)生掌握等腰三角形和等邊三角形的軸對稱性及其有關(guān)性質(zhì),從而發(fā)展空間觀念。評測練習(xí)在△ABC中,BC=10,邊BC的垂直平分線分別交AB,BC于點E,D,BE=6,求△BCE的周長.
2、如圖,AB是△ABC的一條邊,DE是AB的垂直平分線,垂足為E,并交BC于點D,已知AB=8cm,BD=6cm,那么EA=________,DA=____.3、如圖,在△ABC中,AB=AC=16cm,AB的垂直平分線交AC于D,如果BC=10cm,那么△BCD的周長是_______cm.4、如圖,已知點D在AB的垂直平分線上,如果AC=5cm,BC=4cm,那么△BDC的周長是()cm。A.6B.7C.8D.9教學(xué)反思本課教學(xué)重點是使學(xué)生初步認識軸對稱圖形的一些基本特征,難點是掌握判別軸對稱圖形的方法。在此之前學(xué)生已經(jīng)學(xué)過一些平面圖形的特征,形成了一定的空間觀念,自然界和生活中具有軸對稱性質(zhì)的事物有很多,也為學(xué)生奠定了感性基礎(chǔ)。這是一堂集欣賞美與動手操作為一體的綜合實踐課,為了更有效地突出重點,突破難點,按照學(xué)生的認知規(guī)律,遵循教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)\o"思想"思想,因此,本課的教學(xué)設(shè)計力求體現(xiàn):數(shù)學(xué)問題生活化,注重培養(yǎng)學(xué)生觀察、交流、操作、探究能力的培養(yǎng),讓學(xué)生充分經(jīng)歷知識的形成過程,在教學(xué)過程中建構(gòu)具有教育性、創(chuàng)造性、實踐性
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 環(huán)境經(jīng)濟評價與經(jīng)濟影響評估-洞察闡釋
- 模糊控制變頻空調(diào)器項目投資風(fēng)險評估報告
- 幼兒園教學(xué)中動手能力培養(yǎng)策略的實踐研究
- 應(yīng)用跳轉(zhuǎn)隱私保護-洞察闡釋
- 傳統(tǒng)休閑食品項目投資風(fēng)險評估報告
- 高性能金屬構(gòu)件制造-洞察闡釋
- 空間技術(shù)發(fā)展前沿-洞察闡釋
- 數(shù)字貨幣與供應(yīng)鏈金融的結(jié)合與應(yīng)用研究-洞察闡釋
- 基于動態(tài)數(shù)據(jù)的地質(zhì)資源智能評估與預(yù)測-洞察闡釋
- 仿皮帶記憶金屬扣頭創(chuàng)新創(chuàng)業(yè)項目商業(yè)計劃書
- 2024《整治形式主義為基層減負若干規(guī)定》全文課件
- GB 17565-2007防盜安全門通用技術(shù)條件
- GB 14443-2007涂裝作業(yè)安全規(guī)程涂層烘干室安全技術(shù)規(guī)定
- 國開數(shù)據(jù)結(jié)構(gòu)(本)課程實驗報告
- 駕駛員行車安全知識培訓(xùn)課件
- 新教材人教A版高中數(shù)學(xué)必修第二冊全冊教學(xué)課件
- 老年患者的皮膚管理
- 機械式停車設(shè)備
- 菌種確認課件
- 醫(yī)院病房樓電氣安裝施工方案
- 腸外營養(yǎng)及腸外營養(yǎng)制劑
評論
0/150
提交評論