高一數學三角函數公式歸納_第1頁
高一數學三角函數公式歸納_第2頁
高一數學三角函數公式歸納_第3頁
免費預覽已結束,剩余1頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

高一數學三角函數公式歸納高一數學學習大家要記憶許多公式,這樣在解題的時候才能手到擒來,為了關心大家把握高一數學公式,下面是作者的我為您帶來的4篇《高一數學三角函數公式歸納》。

高一數學三角函數公式篇一

1.兩角和公式

sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

2.和差化積

2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB

3.半角公式

sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))

4.倍角公式

tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

高一數學三角函數公式篇二

公式一:

設α為任意角,終邊相同的角的同一三角函數的值相等:

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

公式二:

設α為任意角,π+α的三角函數值與α的三角函數值之間的關系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α與-α的三角函數值之間的關系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α與α的`三角函數值之間的關系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式-和公式三可以得到2π-α與α的三角函數值之間的關系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α與α的三角函數值之間的關系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)

高一數學三角函數公式篇三

公式一:

設為任意角,終邊相同的角的同一三角函數的值相等:

sin(2k+)=sin

cos(2k+)=cos

tan(2k+)=tan

cot(2k+)=cot

公式二:

設為任意角,+的三角函數值與的三角函數值之間的關系:

sin(+)=-sin

cos(+)=-cos

tan(+)=tan

cot(+)=cot

公式三:

任意角與-的三角函數值之間的關系:

sin(-)=-sin

cos(-)=cos

tan(-)=-tan

cot(-)=-cot

公式四:

利用公式二和公式三可以得到-與的三角函數值之間的關系:

sin(-)=sin

cos(-)=-cos

tan(-)=-tan

cot(-)=-cot

公式五:

利用公式-和公式三可以得到2-與的三角函數值之間的關系:

sin(2-)=-sin

cos(2-)=cos

tan(2-)=-tan

cot(2-)=-cot

公式六:

/2及3/2與的三角函數值之間的關系:

sin(/2+)=cos

cos(/2+)=-sin

tan(/2+)=-cot

cot(/2+)=-tan

sin(/2-)=cos

cos(/2-)=sin

tan(/2-)=cot

cot(/2-)=tan

sin(3/2+)=-cos

cos(3/2+)=sin

tan(3/2+)=-cot

cot(3/2+)=-tan

sin(3/2-)=-cos

cos(3/2-)=-sin

tan(3/2-)=cot

cot(3/2-)=tan

(以上kZ)

高一數學三角函數公式篇四

(sinx)=cosx

(cosx)=-sinx

(tanx)=1/(cosx)^2=(secx)^2=1+(tanx)^2

-(cotx)=1/(sinx)^2=(cscx)^2=1+(cotx)^2

(secx)=tanx·secx

(cscx)=-cotx·cscx

(arcsinx)=1/(1-x^2)^1/2

(arccosx)=-1/(1-x^2)^1/2

(arctanx)=1/(1+x^2)

(arccotx)=-1/(1+x^2)

(arcsecx)=1/(|x|(x^2-1)^1/2)

(arccscx)=-1/(|x|(x^2-1)^1/2)

④(sinhx)=coshx

(coshx)=sinhx

(tanhx)=1/(coshx)^2=(sechx)^2

(coth)=-1/(sinhx)^2=-(cschx)^2

(sechx)=-tanhx·sechx

(cschx)=-cothx·cschx

(arsinhx)=1/(x^2+1)^1/2

(arcoshx

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論