




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
高中數學必修簡單幾何體課件第一頁,共四十頁,編輯于2023年,星期二本章概述
概述:由于在土木建筑、機械設計、航海測繪、空間技術研的研究過程中等,都要涉及到對立體圖形的研究,這就使得對立體圖形的特征及性質的研究成為必要。對于立體幾何這一章的學習方式,我們將以具體的立體圖形為背景,特別是以長方體、正方體、圓柱體、圓錐體、圓臺體、球體等幾何體為背景,通過直觀感知、畫圖確認、思維論證、度量計算等方法,了解簡單幾何體的基本特征及其直觀圖、三視圖。學習要求:重點理解并掌握空間中的點、線、面的位置關系,并能夠用數學符號語言對某些位置關系進行表示和論證,培養和發展大家的空間想象力、推理論證的能力和運用圖形語言進行交流的能力。第二頁,共四十頁,編輯于2023年,星期二下面我們將一起學習空間中最基本的圖形——平面請大家想一想,在平內,最基本的圖形是什么呢?在平面內,最基本的圖形是:點、直線、射線、線段。但是在空間中,最基本的圖形除了以上的4種之外還有一種基本圖形——平面。大家知道:平靜的桌面、黑板面、湖面都給我們一種平面的局部感覺。請大家想一想,在空間中,平面給大家的感覺會是怎樣的呢?在空間中,平面和直線一樣,都是無限延展的,因此,我們不能把一個無限延展的平面在一張紙上或書本上表示出來,我們通常用平面的一部分表示整個平面。例如:第三頁,共四十頁,編輯于2023年,星期二通常把平面用一個希臘字母α、β、γ等字母表示,還可以用表示平行四邊形的四個頂點的字母來表示(或用用表示平行四邊形的對角頂點的兩個字母來表示)例如:αABCDβ記為:平面α記為:平面ABCD或平面AC、平面BD記為:平面βABC記為:平面ABCO記為:圓面O第四頁,共四十頁,編輯于2023年,星期二練習1、判斷下列各題的說法正確與否,在正確的說法的題號后打,否則打:1、一個平面長可以為4米,寬可以為2米;()2、平面沒有邊界,但有厚度;()3、一個平面的面積是25cm2;()4、一個平面可以把空間分成兩部分.()第五頁,共四十頁,編輯于2023年,星期二
§1.簡單幾何體第六頁,共四十頁,編輯于2023年,星期二導入:三維空間是人類生存的現實空間,生活中蘊涵著豐富的幾何體,請大家欣賞下列各式各樣的幾何體。第七頁,共四十頁,編輯于2023年,星期二第八頁,共四十頁,編輯于2023年,星期二§1.1:簡單的旋轉體問題1:如圖所示:已知線段AB垂直于直線L于A點,如果把線段AB繞著點A旋轉一周,且在線段AB在旋轉的過程中始終與直線L垂直,那么線段AB在旋轉的過程中所形成的圖形會是什么呢?AABL第九頁,共四十頁,編輯于2023年,星期二問題2:如圖所示:已知直線AB垂直于直線L于O點,如果把直線AB繞著點O點旋轉一周,且直線AB在旋轉的過程中始終與直線L垂直,那么直線AB在旋轉的過程中所形成的圖形會是什么呢?ABLO第十頁,共四十頁,編輯于2023年,星期二問題3:如圖所示:把半圓O繞著其直徑AB所在的直線在空間旋轉一周,則半圓O在旋轉的過程中所形成的圖形會是什么呢?(球面)問題3如果把一個半圓面繞著其直徑所在的直線在空間旋轉一周,則半圓面在旋轉的過程中所形成的圖形會是什么呢?(球體)第十一頁,共四十頁,編輯于2023年,星期二七、球的結構特征O球心半徑AB1、球的定義:以半圓的直徑所在直線為旋轉軸,將半圓旋轉一周后所形成的曲面叫作球面。把球面所圍成的幾何體叫作球體,簡稱球。連結球心與球面上的任意一點的線段叫作球的半徑。其中:把半圓的圓心叫做球心。連結球面上的任意兩點且過球心的線段叫做球的直徑。2、球的表示:用表示球心的字母表示,如球O第十二頁,共四十頁,編輯于2023年,星期二請大家想一想怎樣用集合的觀點去定義球?把到定點O的距離等于或小定長的點的集合叫作球體,簡稱球。其中:把定點O叫作球心,定長叫作球的半徑到定點O的距離等于定長的點的集合叫作球面。第十三頁,共四十頁,編輯于2023年,星期二問題4:如圖所示:把矩形ABCD繞著其一邊AB所在的直線在空間中旋轉一周,則矩形的其它三條邊在旋轉的過程中所形成的曲面圍成的幾何體會是什么呢?ABCD第十四頁,共四十頁,編輯于2023年,星期二四、圓柱的結構特征矩形O1O
1、定義:以矩形的一邊所在直線為旋轉軸,把它在空間中旋轉一周后,其余三邊旋轉形成的曲面所圍成的幾何體叫做圓柱。
(1)旋轉軸叫做圓柱的軸。
(2)垂直于軸的邊旋轉而成的圓面叫做圓柱的底面。
(3)由平行于軸的邊旋轉而成的曲面叫做圓柱的側面。
(4)無論旋轉到什么位置不垂直于軸的邊都叫做圓柱的母線。第十五頁,共四十頁,編輯于2023年,星期二軸母線底面側面2、表示:用表示它的軸的端點的兩個字母表示,如圓柱OO1。OO1第十六頁,共四十頁,編輯于2023年,星期二問題5:如圖所示:把直角三角形ABC繞著其一邊AB所在的直線在空間中旋轉一周,則直角三角形ABC的其它兩條邊在旋轉的過程中所形成的曲面圍成的幾何體會是什么呢?ABC第十七頁,共四十頁,編輯于2023年,星期二五、圓錐的結構特征直角三角形SAO
1、定義:以直角三角形的一條直角邊所在直線為旋轉軸,其余兩邊旋轉而成的曲面所圍成的幾何體叫做圓錐。
(1)旋轉軸叫做圓錐的軸。
(2)垂直于軸的邊旋轉而成的圓面叫做圓錐的底面。
(3)不垂直于軸的邊旋轉而成的曲面叫做圓錐的側面。
(4)無論旋轉到什么位置不垂直于軸的邊都叫做圓錐的母線。第十八頁,共四十頁,編輯于2023年,星期二OSBA軸底面側面母線2、圓錐的表示:用表示它的軸的端點的兩個字母表示,如所示,記為:圓錐SO第十九頁,共四十頁,編輯于2023年,星期二問題6:如圖所示:直角梯形ABCD繞著它的垂直于底邊的腰AB所在的直線在空間中旋轉一周,則直角梯形ABCD的其它三條邊在旋轉的過程中所形成的曲面圍成的幾何體會是什么呢?ABCD第二十頁,共四十頁,編輯于2023年,星期二圓臺的定義1:把直角梯形繞著它的垂直于底邊的腰所在的直線在空間中旋轉一周,則直角梯形的其它三條邊在旋轉的過程中所形成的曲面圍成的幾何體會叫作圓臺六、圓臺的結構特征:第二十一頁,共四十頁,編輯于2023年,星期二
圓臺的定義2:用一個平行于圓錐底面的平面去截圓錐,底面與截面之間的部分,這樣的幾何體叫做圓臺。第二十二頁,共四十頁,編輯于2023年,星期二O'O底面底面軸側面母線2、圓臺的表示:用表示它的軸的字母表示,如圓臺OO′第二十三頁,共四十頁,編輯于2023年,星期二總結:由于球體、圓柱、圓錐、圓臺分別由平面圖形半圓、矩形、直角三角形、直角梯形通過繞著一條軸旋轉而生成的,所以把它們都叫旋轉體。第二十四頁,共四十頁,編輯于2023年,星期二§1.2:簡單的多面體
1.多面體的定義:把由若干個平面多邊形圍成的空間圖形叫做多面體。自然界有很多的物體都呈多面體的形狀,如圖所示:其中:把圍成多面體的各個多邊形叫作多面體的面;兩個面的公共邊叫作多面體的棱,棱與棱的公共點叫作多面體的頂點;連結不在同一個面內的兩個頂點的線段叫作多面體的對角線。例如:多面體按照它的面數的多少,可以分為:四面體、五面體、六面體、、、、、第二十五頁,共四十頁,編輯于2023年,星期二面面棱頂點棱面第二十六頁,共四十頁,編輯于2023年,星期二一、觀察下列幾何體并思考:它們具有哪些性質?第二十七頁,共四十頁,編輯于2023年,星期二
1、定義:有兩個面互相平行,其余各面都是四邊形,并且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體叫做棱柱。兩個互相平行的平面叫做棱柱的底面,其余各面叫做棱柱的側面。相鄰側面的公共邊叫做棱柱的側棱。側面與底的公共頂點叫做棱柱的頂點。第二十八頁,共四十頁,編輯于2023年,星期二底面側面側棱頂點底面第二十九頁,共四十頁,編輯于2023年,星期二一、觀察下列幾何體并思考:棱柱(1),(3)與棱柱(2)的不同之處?
(1)(2)(3)第三十頁,共四十頁,編輯于2023年,星期二兩個特殊的棱柱:直棱柱與正棱柱
把側棱垂直于底面的棱柱叫作直棱柱;
把底面是正多邊形的直棱柱叫作正棱柱;直棱柱的性質:直棱柱的側面都是矩形;正棱柱的性質:正棱柱的側面是全等的矩形;第三十一頁,共四十頁,編輯于2023年,星期二
2、棱柱的分類:棱柱的底面可以是三角形、四邊形、五邊形、……我們把棱柱按照底面多邊形邊數的多少,可分三棱柱、四棱柱、五棱柱、……三棱柱四棱柱五棱柱第三十二頁,共四十頁,編輯于2023年,星期二3、棱柱的表示法(下圖)
棱柱用表示兩底面多邊形的頂點的字母表示棱柱,如:棱柱ABCDE-A1B1C1D1E1
。第三十三頁,共四十頁,編輯于2023年,星期二二、觀察下列幾何體,有什么相同點?第三十四頁,共四十頁,編輯于2023年,星期二1、棱錐的概念
有一個面是多邊形,其余各面是有一個公共頂點的三角形,由這些面所圍成的幾何體叫做棱錐。這個多邊形面叫做棱錐的底面。有公共頂點的各個三角形叫做棱錐的側面。各側面的公共頂點叫做棱錐的頂點。相鄰側面的公共邊叫做棱錐的側棱。第三十五頁,共四十頁,編輯于2023年,星期二棱錐的底面棱錐的側面棱錐的頂點棱錐的側棱SABCDE第三十六頁,共四十頁,編輯于2023年,星期二一個特殊的棱錐:正棱錐
把底面為正多形,側面是全等的三角形的棱錐叫作正棱錐正棱錐的性質:正棱錐的側棱長相等;側面是全等的等腰三角形;第三十七頁,共四十頁,編輯于2023年,星期二2、棱錐的分類:按底面多邊形的邊數,可以分為三棱錐、四棱錐、五棱錐、……ABCDS3、棱錐的表示方法:用表示頂點和底面的字母表示。如四棱錐S-ABCD。第三十八頁,共四十頁,編輯于2023年,星期二BCADSB1A1C1D1DBCAC1
B1A1D1思考題:用一個平行于棱錐底面的平面去截棱錐,那
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年環境科學綜合素質考試題及答案
- it工程師面試題簡答題及答案
- 2025年物流管理與供應鏈考試試題及答案
- 素質能力測試題庫及答案
- java面試題及答案練習軟件
- 2025年建筑工程管理相關知識考試試題及答案
- 軟件設計師考試時間管理試題及答案
- 軟件設計師考試學習資源與試題答案
- 項目管理師的跨部門協作技巧試題及答案
- 西方政治參與模式的革新試題及答案
- 高中文言文實詞120個
- 中考數學-規律探究型問題(2種命題預測+17種題型合集+專題訓練)(含答案)
- 建筑與環境設計專題知到智慧樹章節測試課后答案2024年秋寧夏大學
- 2025年全球及中國電池包用防爆閥行業頭部企業市場占有率及排名調研報告
- 遼寧省沈陽126中學2025屆中考生物考前最后一卷含解析
- 4S店燒烤活動方案
- 《大氣輻射學》課件
- 新課標(水平三)體育與健康《籃球》大單元教學計劃及配套教案(18課時)
- 產品數字護照(DPP)技術發展報告(2023年)
- 2025高考數學專項復習第三章 函數與基本初等函數第1節 函數的概念及其表示含答案
- 2023-2024學年廣東省深圳市深中共同體聯考八年級(下)期中地理試卷
評論
0/150
提交評論