




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
MeasurementSystemAnalysisModuleContentMeasurementSystemAnalysisforAttributesComponentsofGageVariationEffectofMeasurementVariabilityAssessingMeasurementVariability2MeasurementSystemAnalysisforAttributesIntherealworld,noteverycharacteristicismeasurable.Insuchcases,aunitisjudgedtobegoodorbadbasedonwhetheritisdefectfreee.g.visualinspectionwhetheritservesitsfunctionalpurposee.g.functionaltesting3WarmUpExerciseTask:Youhave60secondstodocumentthenumberoftimesthe6thletterofthealphabetappearsinthefollowingtext.TheNecessityofTrainingFarmHandsforFirstClassFarmsintheFatherlyHandlingofFarmLiveStockisForemostintheEyesofFarmOwners.SincetheForefathersoftheFarmOwnersTrainedtheFarmHandsforFirstClassFarmsintheFatherlyHandlingofFarmLiveStock,theFarmOwnersFeeltheyshouldcarryonwiththeFamilyTraditionofTrainingFarmHandsofFirstClassFarmersintheFatherlyHandlingofFarmLiveStockBecausetheyBelieveitistheBasisofGoodFundamentalFarmManagement.4AttributeTerminologyAttributeData:Qualitative(go/nogo)datathatcanbetalliedforrecordingandanalysis.AttributeMeasurementSystem:Ameasurementsystemthatcompareseachparttoastandardandacceptsthepartifthisstandardismet.Screen:100%evaluationofproductusinginspectiontechniques(anattributemeasurementsystem).ScreenEffectiveness:Theabilityoftheattributemeasurementsystemtoproperlydiscriminategoodfrombad.CustomerBias:Operatorhasatendencytoholdbackgoodproduct.ProducerBias:Operatorhasatendencytopassdefectiveproduct.5AttributeR&R-Method1)Selectaminimumof30partsfromtheprocess.50%ofthepartsinyourstudyshouldhavedefects50%ofthepartsshouldbedefectfreeIfpossibleselectborderline(ormarginal)goodandbadsamples2)Identifytheinspectors,whoshouldbequalifiedandexperienced.3)Haveeachinspector,independentlyandinrandomorder,assessthesepartsanddeterminewhetherornottheypassorfail.4)EnterthedataintotheAttributeR&R.xlsspreadsheettoreporttheeffectivenessoftheattributemeasurementsystem.5)Documenttheresults.Implementappropriateactionstofixtheinspectionprocessifnecessary.6)Re-runthestudytoverifythefix.Note:A30piecesamplewillyieldanestimateofinspectorefficiencyandcapabilitywhichhasafairamountofuncertainty.Typicallyalargersampleisnotneededbecausetheinspectionprocessisobviouslyineffective.Thespreadsheetcanhandleupto100samples.6AttributeR&R-Method7AttributeR&R-ScoringForeachsample–operatorcombinationAppraiserScore=1 ifTrial1=Trial2 AppraiserScore=0 ifotherwiseTheappraiserscorereflectstheconsistencyofanoperatorinassessingthesampleunit.AttributeScore=1 ifTrial1=Trial2=Attribute AttributeScore=0 ifotherwiseTheattributescorereflectstheconsistencyofanoperator’sassessmentofthesampleunitagainstthetrueattributeofthesampleunit.8AttributeR&R-Scoring9AttributeR&R-ScoringOverallScreeningEffectivenessOverallAppraiserScore=1ifallappraiserscores=1 OverallAppraiserScore=0ifotherwiseOverallAttributeScore=1 ifallattributescores=1 OverallAttributeScore=0 ifotherwise10AttributeR&R-Scoring11NotesonAttributeR&R(1)If%AppraiserScoreislessthan100%trainingneedstooccur.Focusonspecificareas.(2)%Scorevs.Attributeisanerroragainstaknownpopulationasdeemedbyexperts.(3)100%isthetargetforScreen%EffectivenessScore.(4)Screen%Effectivevs.Attributeisanerroragainstaknownpopulation.100%isthetarget.(5)Attributelegendallowsexceltouseamacrotocountthenumberofoccurrencesofthelegendtext.12VariableGR&RStudyofyourmeasurementsystemwillrevealtherelativeamountofvariationinyourdatathatresultsfrommeasurementsystemerror.Itisalsoagreattoolforcomparingtwoormoremeasurementdevicesortwoormoreoperators.MSAshouldbeusedaspartofthecriteriaforacceptinganewpieceofmeasurementequipmenttomanufacturing.Itshouldbethebasisforevaluatingameasurementsystemwhichissuspectofbeingdeficient.Itshouldbepartoftheperiodicmaintenanceprogram.13TypesofVariations14GageVariation-BiasBiasisthedifferencebetweentheaverageofasetofmeasuredvaluesandthetruevalueofthecharacteristicbeingmeasured.x–BiasTrueValueObservedValue15ExampleAnengineerchosefive“goldenunits”thatrepresentedtheexpectedrangeofmeasurements.Twelverandommeasurementsweremadeoneachpart.Meanvalueofthefivestandardis6mmandhistoricalprocessvariationwasfoundtobe12mm.DatacanbefoundintheMeasurementSystemAnalysis.MTWfile.Meanofthesixtymeasurements x =5.9467mmMeanvalueofthefivestandards =6mm Bias =x–=5.9467–6 =–0.0533mm =0.444%ofprocessvariation16GageVariation-LinearityLinearityisthedifferenceinbiasthroughouttheexpectedrangeofmeasurements.1217GageVariation-LinearityLinearitymaybeobtainedviathefollowingprocedure:a) Foreachcase,computetheError(ei),i.e.measuredvalue–truevalueb) Foreachpart,computetheMeanError(ei),i.e.ieinc) DeterminetheslopeforbestfitlineofMeanError
vs
TrueValue
d) Linearity=|Slope|×ProcessVariation18ExampleComputetheaccuracyandlinearityforthedatainpreviousexample,usingMiniTab’s
GageLinearityStudy.StatQualityToolsGageLinearityStudy19Example20GageVariation-StabilityStabilityistheabilityofthemeasurementsystemtoproducethesameaveragemeasurementsonthesameunitatdifferenttimes.x1–x2–x1–21GageVariation-StabilityMeasurementsysteminstabilityistheresultofvariousfactors:Time(longidleperiods),numberofmeasurementstaken,airpressurechange,warm-up,drift,etc.Ifthecausativefactor(s)is/areknown,thefrequencyofcalibrationcanbeadjustedaccordinglytominimizetheerrorduetoinstability.22GageVariation-PrecisionPrecisionreferstotheabilityofameasurementsystemtoproducethesamevalueonrepeatedmeasurementsofthesameunit.Itismeasuredbythestandarddeviation(orvariance).s1s2System1System223AccuracyvsPrecision1)accuratebutnotprecise 2)precisebutnotaccurate3)neitheraccuratenorprecise 4)bothaccurateandprecise24AccuracyvsPrecision1)accuratebutnotprecise 2)precisebutnotaccurate3)neitheraccuratenorprecise 4)bothaccurateandprecise25ComponentsofPrecisionPrecisionmaybebrokendownintotwoseparateparts:RepeatabilitytheabilityofameasurementsystemtorepeatameasurementonthesameunitunderthesameoperatingconditionsReproducibilitytheabilityofameasurementsystemtoreproduceameasurementonthesameunitunderdifferentmeasurementconditions26SourceofVariabilityProcessVariabilitytruevariabilitywithinandbetweenunitsduetovariationinproductionprocess,rawmaterial,equipmentconditionandenvironmentMeasurementVariabilityvariabilityoverandabovetheactualunit-to-unitvariability,arisingfromthemeasurementitself27BasicModelProductVariability(Actualvariability)MeasurementVariabilityTotalVariability(Observedvariability)+=28Whichoneisgood?Line1Line2TotalVariability(observed)MeasurementVariabilityTrueProcessVariabilitys2(trueprocess)+s2
(meas)=s2
(observed)29BasicModelObservedvalue=mastervalue+measurementoffsetObservedvariability=productvariability+measurementvariabilityMeasurementSystemBias:assessedthroughcalibration.(accuracy)MeasurementSystemVariability:assessedthroughthevariableR&Rstudy(precision)TruevaluesMeasuredvaluesmeasurementoffsetTruevaluesMeasuredvalues30SourcesofMeasurementVariation'Measurement
Variation'HumidityCleanlinessVibrationLine
Voltage
VariationTemperature
FluctuationOperator
TechniqueStandard
ProceduresSufficient
Work
TimeMaintenance
StandardCalibration
FrequencyOperator
TrainingEase
of
Data
EntryAlgorithm
InstabiltyElectrical
InstabilityWearMechanicalinstabilityToolEnvironmentWorkMethods31DiscriminationThenumberofdecimalplacesthatcanbemeasuredbythesystem.Incrementsofmeasureshouldbeatleastone-tenthofthewidthoftheproductspecificationorprocessvariation.12Whichrulershouldbeusedtomeasurepartsfortheprocessrepresentedbythedistributionabove?32AssessingMeasurementVariabilityThreecommonlyusedcriteria:? or? or ? orPrecisiontoToleranceRatioor%Toelrance%R&Ror%contribution?(DistinctCategories)233EffectofMeasurementVariability(1)ExcessiveMeasurementVariability AcceptableMeasurementVariabilityProcessVarianceMeasurementVarianceTotalVarianceProcessVarianceMeasurementVarianceTotalVarianceObservedProcessCapabilityActualProcessCapability34EffectofMeasurementVariability(1A)From Cp ObservedCp
ActualCp35Effectof2Measurement/2Total36EffectofMeasurementVariability(1B)Alternatively,37Effectof5.15
(Measurement/Tolerance)38EffectofMeasurementVariability(2)UnitisGoodUnitisBadPr(UnitisAccepted)Pr(UnitisRejected)39GageRepeatability&ReproducibilityStudy40GageRepeatability&ReproducibilityStudyMethod1:XandRBreaksdowntheoverallvariationintothreecategoriespart-to-partrepeatabilityReproducibility(Willnotbediscussed)Method2:ANOVAFurtherbreakdowninthereproducibilitycomponentpart-to-partrepeatabilityreproducibility —operatormaineffect —operator×partinteraction41ExampleABlackBeltseekstoassessthecapabilityofoxygenanalyzersusedinthemeasurementofoxygencontentinnitrogen-purgedreflowovens.Fourflowratesofnitrogenwereselectedforhisstudy.Twoanalyzerswererandomlyselected.Verifyifthecurrentoxygenanalyzersareadequate.Thetoleranceoftheprocess300.ThedatacanbefoundinMeasurementSystemAnalysis.MTW.42ExampleStatQualityToolsGageR&RStudy(Crossed)43ExampleSessionWindowGageR&RStudy-ANOVAMethodGageR&R %ContributionStdDevStudyVar%StudyVar%ToleranceSource
VarComp
(ofVarComp)
(SD)
(5.15*SD)
(%SV)
(SV/Toler)TotalGageR&R5.4507.382.334512.022727.164.01Repeatability0.4000.540.63223.25567.361.09Reproducibility5.0506.842.247311.573626.153.86Analyzer3.7245.041.92989.938222.453.31Analyzer*FlowRate1.3261.801.15175.931213.401.98Part-To-Part68.41092.628.271042.595896.2414.20TotalVariation73.860100.008.594244.2600100.0014.75NumberofDistinctCategories=544NumberofDistinctCategoriesThenumberofdistinctcategoriesrepresentsthenumberofgroupswithintheprocessdatathatthemeasurementsystemcandiscern.
If10differentpartswereusedinthegagemeasurementstudy,and4distinctcategoriesweredistinguished.Thismeansthatsomeofthose10partsarenotdifferentenoughtobediscernedasbeingdifferentbythemeasurementsystem.Highernumberofdistinctcategoriesimpliesamoreprecisegage.45NumberofDistinctCategoriesAutomobileIndustryActionGroup(AIAG)recommendations:Categories Remarks <2 Systemcannotdiscernonepartfromanother =2 Systemcanonlydividedataintwogroups e.g.highandlow =3 Systemcanonlydividedatainthreegroups e.g.low,middleandhigh
4 Systemisacceptable46UsesofP/TandP/PV(%R&R)TheP/Tratioisthemostcommonestimateofmeasurementsystemprecision.Thisestimatemaybeappropriateforevaluatinghowwellthemeasurementsystemcanperformwithrespecttothespec.Specifications,however,mustbeappropriatelyselected.Generally,theP/Tratioisagoodestimatewhenthemeasurementsystemisonlyusedtoclassifyproductionsamples.Eventhen,ifprocesscapability(Cpk)isnotadequate,theP/Tratiomaygiveyouafalsesenseofsecurity.TheP/TV(%R&R)isthebestmeasurefortheBlackBelt.Thisestimateshowwellthemeasurementsystemperformswithrespecttotheoverallprocessvariation.%R&Risthebestestimatewhenperformingprocessimprovementstudies.Caremus
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權】 ISO 1183-1:2025 EN Plastics - Methods for determining the density of non-cellular plastics - Part 1: Immersion method,liquid pycnometer method and titration method
- 2025年二級注冊建筑師之法律法規經濟與施工模考模擬試題(全優)
- 【凱里(黔東南)】2025年貴州凱里市事業單位第二輪公開招聘工作人員181人筆試歷年典型考題及考點剖析附帶答案詳解
- 【通化】2025年上半年吉林通化市事業單位公開招聘應征入伍高校畢業生24人筆試歷年典型考題及考點剖析附帶答案詳解
- 第五章食品感官分析第一節食品感官分析的定義與特性第二節食品
- 2025年安徽省應急管理廳直屬事業單位公開招聘工作人員筆試歷年典型考題及考點剖析附帶答案詳解
- 第六章分子的結構與性質無機化學多媒體電子教案74課件
- 冰凍可樂教學課件下載
- 優異英語教學課件
- 口腔癌圍手術期管理
- 上市專項工作組管理辦法
- 2024華師一附中自招考試數學試題
- 2022年萊蕪技師學院工作人員招聘考試真題
- 從事工程咨詢業務工作年限證明
- 《北京市住房租賃合同》示范文本(BF-2023-0603)
- 呼吸科危重癥的診斷及治療
- GB/T 11693-1994船用法蘭焊接單面座板
- 提高手術室垃圾分類正確率PDCA
- GB 16806-1997消防聯動控制設備通用技術條件
- 320T履帶吊安裝方案 9
- 清潔間歇導尿重點技術評分重點標準
評論
0/150
提交評論