浙江省余姚市第四中學2023年數(shù)學高一第二學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
浙江省余姚市第四中學2023年數(shù)學高一第二學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
浙江省余姚市第四中學2023年數(shù)學高一第二學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
浙江省余姚市第四中學2023年數(shù)學高一第二學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
浙江省余姚市第四中學2023年數(shù)學高一第二學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一下數(shù)學期末模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某公司的班車在和三個時間點發(fā)車.小明在至之間到達發(fā)車站乘坐班車,且到達發(fā)車站的時刻是隨機的,則他等車時間不超過分鐘的概率是()A. B. C. D.2.已知函數(shù),則函數(shù)的最小正周期為()A. B. C. D.3.已知等差數(shù)列的前n項和為,且,,則()A.11 B.16 C.20 D.284.已知正方形的邊長為,若將正方形沿對角線折疊為三棱錐,則在折疊過程中,不能出現(xiàn)()A. B.平面平面 C. D.5.已知直線:,:,:,若且,則的值為A. B.10 C. D.26.如圖,扇形的圓心角為,半徑為1,則該扇形繞所在直線旋轉一周得到的幾何體的表面積為(

)A. B. C. D.7.已知直線l的方程是y=2x+3,則l關于y=-x對稱的直線方程是()A.x-2y+3=0 B.x-2y=0C.x-2y-3=0 D.2x-y=08.一個人打靶時連續(xù)射擊兩次,事件“至多有一次中靶”的互斥事件是A.兩次都中靶B.至少有一次中靶C.兩次都不中靶D.只有一次中靶9.過點的圓的切線方程是()A. B.或C.或 D.或10.已知均為實數(shù),則“”是“構成等比數(shù)列”的()A.必要不充分條件 B.充分不必要條件C.充要條件 D.既不充分也不必要條件二、填空題:本大題共6小題,每小題5分,共30分。11.在中,已知角的對邊分別為,且,,,若有兩解,則的取值范圍是__________.12.記Sn為等比數(shù)列{an}的前n項和.若,則S5=____________.13.設向量,且,則__________.14.已知實數(shù)滿足條件,則的最大值是________.15.已知函數(shù)的部分圖象如圖所示,則的單調(diào)增區(qū)間是______.16.已知空間中的三個頂點的坐標分別為,則BC邊上的中線的長度為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知等差數(shù)列滿足,且是的等比中項.(1)求數(shù)列的通項公式;(2)設,數(shù)列的前項和為,求使成立的最大正整數(shù)的值.18.已知數(shù)列{}的首項.(1)求證:數(shù)列為等比數(shù)列;(2)記,若,求最大正整數(shù).19.已知函數(shù).(1)求的最小正周期和單調(diào)遞增區(qū)間;(2)若方程在有兩個不同的實根,求的取值范圍.20.在公差不為零的等差數(shù)列中,,且成等比數(shù)列.(1)求的通項公式;(2)設,求數(shù)列的前項和.21.在中,分別是角的對邊,且.(1)求的大小;(2)若,求的面積.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

根據(jù)題意得小明等車時間不超過分鐘的總的時間段,再由比值求得.【詳解】小明等車時間不超過分鐘,則他需在至到,或至到,共計分鐘,所以概率故選A.【點睛】本題考查幾何概型,關鍵找到滿足條件的時間段,屬于基礎題.2、D【解析】

根據(jù)二倍角公式先化簡,再根據(jù)即可。【詳解】由題意得,所以周期為.所以選擇D【點睛】本題主要考查了二倍角公式;常考的二倍角公式有正弦、余弦、正切。屬于基礎題。3、C【解析】

可利用等差數(shù)列的性質(zhì),,仍然成等差數(shù)列來解決.【詳解】為等差數(shù)列,前項和為,,,成等差數(shù)列,,又,,,.故選:.【點睛】本題考查等差數(shù)列的性質(zhì),關鍵在于掌握“等差數(shù)列中,,仍成等差數(shù)列”這一性質(zhì),屬于基礎題.4、D【解析】對于A:取BD中點O,因為,AO所以面AOC,所以,故A對;對于B:當沿對角線折疊成直二面角時,有面平面平面,故B對;對于C:當折疊所成的二面角時,頂點A到底面BCD的距離為,此時,故C對;對于D:若,因為,面ABC,所以,而,即直角邊長與斜邊長相等,顯然不對;故D錯;故選D點睛:本題考查了立體幾何中折疊問題,要分析清楚折疊前后的變化量與不變量以及線線與線面的位置關系,屬于中檔題.5、C【解析】

由且,列出方程,求得,,解得的值,即可求解.【詳解】由題意,直線:,:,:,因為且,所以,且,解得,,所以.故選C.【點睛】本題主要考查了兩直線的位置關系的應用,其中解答中熟記兩直線的位置關系,列出方程求解的值是解答的關鍵,著重考查了推理與計算能力,屬于基礎題.6、C【解析】

以所在直線為旋轉軸將整個圖形旋轉一周所得幾何體是一個半球,利用球面的表面積公式及圓的表面積公式即可求得.【詳解】由已知可得:以所在直線為旋轉軸將整個圖形旋轉一周所得幾何體是一個半球,其中半球的半徑為1,故半球的表面積為:故答案為:C【點睛】本題主要考查了旋轉體的概念,以及球的表面積的計算,其中解答中熟記旋轉體的定義,以及球的表面積公式,準確計算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.7、A【解析】將x=-y,y=-x代入方程y=2x+3中,得所求對稱的直線方程為-x=-2y+3,即x-2y+3=0.8、A【解析】

利用對立事件、互斥事件的定義直接求解.【詳解】一個人打靶時連續(xù)射擊兩次,事件“至多有一次中靶”的互斥事件是兩次都中靶.故選:A.【點睛】本題考查互事件的判斷,是中檔題,解題時要認真審題,注意對立事件、互斥事件的定義的合理運用.9、D【解析】

先由題意得到圓的圓心坐標,與半徑,設所求直線方程為,根據(jù)直線與圓相切,結合點到直線距離公式,即可求出結果.【詳解】因為圓的圓心為,半徑為1,由題意,易知所求切線斜率存在,設過點與圓相切的直線方程為,即,所以有,整理得,解得,或;因此,所求直線方程分別為:或,整理得或.故選D【點睛】本題主要考查求過圓外一點的切線方程,根據(jù)直線與圓相切,結合點到直線距離公式即可求解,屬于常考題型.10、A【解析】解析:若構成等比數(shù)列,則,即是必要條件;但時,不一定有成等比數(shù)列,如,即是不充分條件.應選答案A.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

利用正弦定理得到,再根據(jù)有兩解得到,計算得到答案.【詳解】由正弦定理得:若有兩解:故答案為【點睛】本題考查了正弦定理,有兩解,意在考查學生的計算能力.12、.【解析】

本題根據(jù)已知條件,列出關于等比數(shù)列公比的方程,應用等比數(shù)列的求和公式,計算得到.題目的難度不大,注重了基礎知識、基本計算能力的考查.【詳解】設等比數(shù)列的公比為,由已知,所以又,所以所以.【點睛】準確計算,是解答此類問題的基本要求.本題由于涉及冪的乘方運算、繁分式分式計算,部分考生易出現(xiàn)運算錯誤.13、【解析】因為,所以,故答案為.14、8【解析】

畫出滿足約束條件的可行域,利用目標函數(shù)的幾何意義求解最大值即可.【詳解】實數(shù),滿足條件的可行域如下圖所示:將目標函數(shù)變形為:,則要求的最大值,即使直線的截距最大,由圖可知,直線過點時截距最大,,故答案為:8.【點睛】本題考查線性規(guī)劃的簡單應用,解題關鍵是明確目標函數(shù)的幾何意義.15、(區(qū)間端點開閉均可)【解析】

由已知函數(shù)圖象求得,進一步得到,再由五點作圖的第二點求得,則得到函數(shù)的解析式,然后利用復合函數(shù)的單調(diào)性求出的單調(diào)增區(qū)間.【詳解】由圖可知,,則,.又,.則.由,,解得,.的單調(diào)增區(qū)間是.【點睛】本題主要考查由函數(shù)的部分圖象求函數(shù)解析式以及復合函數(shù)單調(diào)區(qū)間的求法.16、【解析】

先求出BC的中點,由此能求出BC邊上的中線的長度.【詳解】解:因為空間中的三個頂點的坐標分別為,所以BC的中點為,所以BC邊上的中線的長度為:,故答案為:.【點睛】本題考查三角形中中線長的求法,考查中點坐標公式、兩點間距離的求法等基礎知識,考查運算求解能力,是基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)8【解析】

(1)設等差數(shù)列的公差為,根據(jù)題意列出有關和的方程組,可解出和的值,從而可求出數(shù)列的通項公式;(2)先得出,利用裂項法求出數(shù)列的前項和,然后解不等式,可得出的取值范圍,于此可得出的最大值.【詳解】(1)設等差數(shù)列的公差為,,即,∴,是,的等比中項,∴,即,解得.∴數(shù)列的通項公式為;(2)由(1)得∴.由,得,∴使得成立的最大正整數(shù)的值為8.【點睛】本題考查等差數(shù)列的通項公式,考查裂項求和法,解等差數(shù)列的通項公式,一般是利用方程思想求出等差數(shù)列的首項和公差,利用這兩個基本兩求出等差數(shù)列的通項公式,考查運算求解能力,屬于中等題.18、(1)詳見解析;(2)99.【解析】

(1)利用數(shù)列遞推公式取倒數(shù),變形可得,從而可證數(shù)列為等比數(shù)列;(2)確定數(shù)列的通項,利用等比數(shù)列的求和公式求和,即可求最大的正整數(shù).【詳解】解(1)∵,∴,∵,∴∴數(shù)列為等比數(shù)列.(2)由(1)可求得,∴.∴.因為在上單調(diào)遞增,又因為,∴【點睛】本題考查數(shù)列遞推公式,考查等比數(shù)列的證明,考查等比數(shù)列的求和公式,屬于中檔題.19、(1)最小正周期,;(2).【解析】

(1)利用兩角差的余弦公式、倍角公式、輔助角公式得,求得周期;(2)利用換元法令,將問題轉化成方程在有兩個不同的實根,再利用圖象得的取值范圍.【詳解】(1),所以的最小正周期,由得:,所以的單調(diào)遞增區(qū)間是.(2)令,因為,所以,即方程在有兩個不同的實根,由函數(shù)的圖象可知,當時滿足題意,所以的取值范圍為.【點睛】第(1)問考查三角恒等變換的綜合運用;第二問考查換元法求參數(shù)的取值范圍,注意在換元的過程中參數(shù)不能出錯,否則轉化后的問題與原問題就不等價.20、(1);(2).【解析】

(1)先根據(jù)已知求出公差d,即得的通項公式;(2)先證明數(shù)列是等比數(shù)列,再利用等比數(shù)列的前n項和公式求.【詳解】(1)設等差數(shù)列的公差為,由已知得,則,將代入并化簡得,解得,(舍去).所以.(2)由(1)知,所以,所以,所以數(shù)列是首項為2,公比為4的等比數(shù)列.所以.【點睛】本題主要考查等差數(shù)列通項的求法,考查

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論