




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.將三粒均勻的分別標有,,,,,的正六面體骰子同時擲出,朝上一面上的數字分別為,,,則,,正好是直角三角形三邊長的概率是()A. B. C. D.2.如圖,在菱形紙片ABCD中,AB=4,∠A=60°,將菱形紙片翻折,使點A落在CD的中點E處,折痕為FG,點F、G分別在邊AB、AD上.則sin∠AFG的值為()A. B. C. D.3.如圖,圓O是等邊三角形內切圓,則∠BOC的度數是()A.60° B.100° C.110° D.120°4.如圖,在?ABCD中,用直尺和圓規作∠BAD的平分線AG交BC于點E.若BF=8,AB=5,則AE的長為()A.5 B.6 C.8 D.125.從①②③④中選擇一塊拼圖板可與左邊圖形拼成一個正方形,正確的選擇為()A.① B.② C.③ D.④6.在體育課上,甲,乙兩名同學分別進行了5次跳遠測試,經計算他們的平均成績相同.若要比較這兩名同學的成績哪一個更為穩定,通常需要比較他們成績的()A.眾數 B.平均數 C.中位數 D.方差7.如圖,平面直角坐標中,點A(1,2),將AO繞點A逆時針旋轉90°,點O的對應點B恰好落在雙曲線y=kxA.2 B.3 C.4 D.68.如圖,正六邊形ABCDEF內接于,M為EF的中點,連接DM,若的半徑為2,則MD的長度為A. B. C.2 D.19.據調查,某班20為女同學所穿鞋子的尺碼如表所示,尺碼(碼)3435363738人數251021則鞋子尺碼的眾數和中位數分別是()A.35碼,35碼 B.35碼,36碼 C.36碼,35碼 D.36碼,36碼10.如圖,等腰直角三角形的頂點A、C分別在直線a、b上,若a∥b,∠1=30°,則∠2的度數為()A.30° B.15° C.10° D.20°二、填空題(共7小題,每小題3分,滿分21分)11.觀察下列的“蜂窩圖”按照它呈現的規律第n個圖案中的“”的個數是_____(用含n的代數式表示)12.若圓錐的地面半徑為,側面積為,則圓錐的母線是__________.13.若點A(3,﹣4)、B(﹣2,m)在同一個反比例函數的圖象上,則m的值為.14.對于任意實數a、b,定義一種運算:a※b=ab﹣a+b﹣1.例如,1※5=1×5﹣1+5﹣1=ll.請根據上述的定義解決問題:若不等式3※x<1,則不等式的正整數解是_____.15.在形狀為等腰三角形、圓、矩形、菱形、直角梯形的5張紙片中隨機抽取一張,抽到中心對稱圖形的概率是________.16.不等式組的解集是_____.17.在平面直角坐標系中,拋物線y=x2+x+2上有一動點P,直線y=﹣x﹣2上有一動線段AB,當P點坐標為_____時,△PAB的面積最小.三、解答題(共7小題,滿分69分)18.(10分)某校為了開闊學生的視野,積極組織學生參加課外讀書活動.“放飛夢想”讀書小組協助老師隨機抽取本校的部分學生,調查他們最喜愛的圖書類別(圖書分為文學類、藝體類、科普類、其他等四類),并將調查結果繪制成如下兩幅不完整的統計圖,請你結合圖中的信息解答下列問題:求被調查的學生人數;補全條形統計圖;已知該校有1200名學生,估計全校最喜愛文學類圖書的學生有多少人?19.(5分)解不等式組請結合題意填空,完成本題的解答.(I)解不等式(1),得;(II)解不等式(2),得;(III)把不等式①和②的解集在數軸上表示出來:(IV)原不等式組的解集為.20.(8分)在一個不透明的布袋里裝有4個標有1、2、3、4的小球,它們的形狀、大小完全相同,李強從布袋中隨機取出一個小球,記下數字為x,王芳在剩下的3個小球中隨機取出一個小球,記下數字為y,這樣確定了點M的坐標畫樹狀圖列表,寫出點M所有可能的坐標;求點在函數的圖象上的概率.21.(10分)目前“微信”、“支付寶”、“共享單車”和“網購”給我們的生活帶來了很多便利,初二數學小組在校內對“你最認可的四大新生事物”進行調查,隨機調查了人(每名學生必選一種且只能從這四種中選擇一種)并將調查結果繪制成如下不完整的統計圖.根據圖中信息求出,;請你幫助他們將這兩個統計圖補全;根據抽樣調查的結果,請估算全校2000名學生中,大約有多少人最認可“微信”這一新生事物?22.(10分)如圖,一次函數y=kx+b(k、b為常數,k≠0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數y=nx(1)求一次函數與反比例函數的解析式;(2)記兩函數圖象的另一個交點為E,求△CDE的面積;(3)直接寫出不等式kx+b≤nx23.(12分)已知,如圖,在坡頂A處的同一水平面上有一座古塔BC,數學興趣小組的同學在斜坡底P處測得該塔的塔頂B的仰角為45°,然后他們沿著坡度為1:2.4的斜坡AP攀行了26米,在坡頂A處又測得該塔的塔頂B的仰角為76°.求:坡頂A到地面PO的距離;古塔BC的高度(結果精確到1米).24.(14分)解不等式組:,并把解集在數軸上表示出來.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
三粒均勻的正六面體骰子同時擲出共出現216種情況,而邊長能構成直角三角形的數字為3、4、5,含這三個數字的情況有6種,故由概率公式計算即可.【詳解】解:因為將三粒均勻的分別標有1,2,3,4,5,6的正六面體骰子同時擲出,按出現數字的不同共=216種情況,其中數字分別為3,4,5,是直角三角形三邊長時,有6種情況,所以其概率為,故選C.【點睛】本題考查的是概率的求法.如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=.邊長為3,4,5的三角形組成直角三角形.2、B【解析】
如圖:過點E作HE⊥AD于點H,連接AE交GF于點N,連接BD,BE.由題意可得:DE=1,∠HDE=60°,△BCD是等邊三角形,即可求DH的長,HE的長,AE的長,
NE的長,EF的長,則可求sin∠AFG的值.【詳解】解:如圖:過點E作HE⊥AD于點H,連接AE交GF于點N,連接BD,BE.
∵四邊形ABCD是菱形,AB=4,∠DAB=60°,
∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB
∴∠HDE=∠DAB=60°,
∵點E是CD中點
∴DE=CD=1
在Rt△DEH中,DE=1,∠HDE=60°
∴DH=1,HE=
∴AH=AD+DH=5
在Rt△AHE中,AE==1
∴AN=NE=,AE⊥GF,AF=EF
∵CD=BC,∠DCB=60°
∴△BCD是等邊三角形,且E是CD中點
∴BE⊥CD,
∵BC=4,EC=1
∴BE=1
∵CD∥AB
∴∠ABE=∠BEC=90°
在Rt△BEF中,EF1=BE1+BF1=11+(AB-EF)1.
∴EF=由折疊性質可得∠AFG=∠EFG,
∴sin∠EFG=sin∠AFG=,故選B.【點睛】本題考查了折疊問題,菱形的性質,勾股定理,添加恰當的輔助線構造直角三角形,利用勾股定理求線段長度是本題的關鍵.3、D【解析】
由三角形內切定義可知OB、OC是∠ABC、∠ACB的角平分線,所以可得到關系式∠OBC+∠OCB=(∠ABC+∠ACB),把對應數值代入即可求得∠BOC的值.【詳解】解:∵△ABC是等邊三角形,∴∠A=∠ABC=∠ACB=60°,∵圓O是等邊三角形內切圓,∴OB、OC是∠ABC、∠ACB的角平分線,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣60°)=60°,∴∠BOC=180°﹣60=120°,故選D.【點睛】此題主要考查了三角形的內切圓與內心以及切線的性質.關鍵是要知道關系式∠OBC+∠OCB=(∠ABC+∠ACB).4、B【解析】試題分析:由基本作圖得到AB=AF,AG平分∠BAD,故可得出四邊形ABEF是菱形,由菱形的性質可知AE⊥BF,故可得出OB=4,再由勾股定理即可得出OA=3,進而得出AE=2AO=1.故選B.考點:1、作圖﹣基本作圖,2、平行四邊形的性質,3、勾股定理,4、平行線的性質5、C【解析】
根據正方形的判定定理即可得到結論.【詳解】與左邊圖形拼成一個正方形,正確的選擇為③,故選C.【點睛】本題考查了正方形的判定,是一道幾何結論開放題,認真觀察,熟練掌握和應用正方形的判定方法是解題的關鍵.6、D【解析】
方差是反映一組數據的波動大小的一個量.方差越大,則各數據與其平均值的離散程度越大,穩定性也越小;反之,則各數據與其平均值的離散程度越小,穩定性越好。【詳解】由于方差能反映數據的穩定性,需要比較這兩名學生立定跳遠成績的方差.故選D.7、B【解析】
作AC⊥y軸于C,ADx軸,BD⊥y軸,它們相交于D,有A點坐標得到AC=1,OC=1,由于AO繞點A逆時針旋轉90°,點O的對應B點,所以相當是把△AOC繞點A逆時針旋轉90°得到△ABD,根據旋轉的性質得AD=AC=1,BD=OC=1,原式可得到B點坐標為(2,1),然后根據反比例函數圖象上點的坐標特征計算k的值.【詳解】作AC⊥y軸于C,AD⊥x軸,BD⊥y軸,它們相交于D,如圖,∵A點坐標為(1,1),∴AC=1,OC=1.∵AO繞點A逆時針旋轉90°,點O的對應B點,即把△AOC繞點A逆時針旋轉90°得到△ABD,∴AD=AC=1,BD=OC=1,∴B點坐標為(2,1),∴k=2×1=2.故選B.【點睛】本題考查了反比例函數圖象上點的坐標特征:反比例函數y=kx(k為常數,k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k8、A【解析】
連接OM、OD、OF,由正六邊形的性質和已知條件得出OM⊥OD,OM⊥EF,∠MFO=60°,由三角函數求出OM,再由勾股定理求出MD即可.【詳解】連接OM、OD、OF,∵正六邊形ABCDEF內接于⊙O,M為EF的中點,∴OM⊥OD,OM⊥EF,∠MFO=60°,∴∠MOD=∠OMF=90°,∴OM=OF?sin∠MFO=2×=,∴MD=,故選A.【點睛】本題考查了正多邊形和圓、正六邊形的性質、三角函數、勾股定理;熟練掌握正六邊形的性質,由三角函數求出OM是解決問題的關鍵.9、D【解析】
眾數是一組數據中出現次數最多的數據,注意眾數可以不止一個;找中位數要把數據按從小到大的順序排列,位于最中間的一個數(或兩個數的平均數)為中位數.【詳解】數據36出現了10次,次數最多,所以眾數為36,一共有20個數據,位置處于中間的數是:36,36,所以中位數是(36+36)÷2=36.故選D.【點睛】考查中位數與眾數,掌握眾數是一組數據中出現次數最多的數據,注意眾數可以不止一個;找中位數要把數據按從小到大的順序排列,位于最中間的一個數(或兩個數的平均數)為中位數是解題的關鍵.10、B【解析】分析:由等腰直角三角形的性質和平行線的性質求出∠ACD=60°,即可得出∠2的度數.詳解:如圖所示:∵△ABC是等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠BAC=30°+90°=120°,∵a∥b,∴∠ACD=180°-120°=60°,∴∠2=∠ACD-∠ACB=60°-45°=15°;故選B.點睛:本題考查了平行線的性質、等腰直角三角形的性質;熟練掌握等腰直角三角形的性質,由平行線的性質求出∠ACD的度數是解決問題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、3n+1【解析】
根據題意可知:第1個圖有4個圖案,第2個共有7個圖案,第3個共有10個圖案,第4個共有13個圖案,由此可得出規律.【詳解】解:由題意可知:每1個都比前一個多出了3個“”,∴第n個圖案中共有“”為:4+3(n﹣1)=3n+1故答案為:3n+1.【點睛】本題考查學生的觀察能力,解題的關鍵是熟練正確找出圖中的規律,本題屬于基礎題型.12、13【解析】試題解析:圓錐的側面積=×底面半徑×母線長,把相應數值代入即可求解.設母線長為R,則:解得:故答案為13.13、1【解析】
設反比例函數解析式為y=,根據反比例函數圖象上點的坐標特征得到k=3×(﹣4)=﹣2m,然后解關于m的方程即可.【詳解】解:設反比例函數解析式為y=,根據題意得k=3×(﹣4)=﹣2m,解得m=1.故答案為1.考點:反比例函數圖象上點的坐標特征.14、2【解析】【分析】根據新定義可得出關于x的一元一次不等式,解之取其中的正整數即可得出結論.【詳解】∵3※x=3x﹣3+x﹣2<2,∴x<,∵x為正整數,∴x=2,故答案為:2.【點睛】本題考查一元一次不等式的整數解以及實數的運算,通過解不等式找出x<是解題的關鍵.15、【解析】
在形狀為等腰三角形、圓、矩形、菱形、直角梯形的5張紙片中,中心對稱圖案的卡片是圓、矩形、菱形,直接利用概率公式求解即可求得答案.【詳解】∵在:等腰三角形、圓、矩形、菱形和直角梯形中屬于中心對稱圖形的有:圓、矩形和菱形3種,∴從這5張紙片中隨機抽取一張,抽到中心對稱圖形的概率為:.故答案為.16、2<x≤1【解析】
本題可根據不等式組分別求出每一個不等式的解集,然后即可確定不等式組的解集.【詳解】由①得x>2,由②得x≤1,∴不等式組的解集為2<x≤1.故答案為:2<x≤1.【點睛】此題主要考查了一元一次不等式組解集的求法,其簡便求法就是用口訣求解,求不等式組解集的口訣:同大取大,同小取小,大小小大中間找,大大小小找不到(無解).17、(-1,2)【解析】
因為線段AB是定值,故拋物線上的點到直線的距離最短,則面積最小,平移直線與拋物線的切點即為P點,然后求得平移后的直線,聯立方程,解方程即可.【詳解】因為線段AB是定值,故拋物線上的點到直線的距離最短,則面積最小,若直線向上平移與拋物線相切,切點即為P點,設平移后的直線為y=-x-2+b,∵直線y=-x-2+b與拋物線y=x2+x+2相切,∴x2+x+2=-x-2+b,即x2+2x+4-b=0,則△=4-4(4-b)=0,∴b=3,∴平移后的直線為y=-x+1,解得x=-1,y=2,∴P點坐標為(-1,2),故答案為(-1,2).【點睛】本題主要考查了二次函數圖象上點的坐標特征,三角形的面積以及解方程等,理解直線向上平移與拋物線相切,切點即為P點是解題的關鍵.三、解答題(共7小題,滿分69分)18、(4)60;(4)作圖見試題解析;(4)4.【解析】試題分析:(4)利用科普類的人數以及所占百分比,即可求出被調查的學生人數;(4)利用(4)中所求得出喜歡藝體類的學生數進而畫出圖形即可;(4)首先求出樣本中喜愛文學類圖書所占百分比,進而估計全校最喜愛文學類圖書的學生數.試題解析:(4)被調查的學生人數為:44÷40%=60(人);(4)喜歡藝體類的學生數為:60-44-44-46=8(人),如圖所示:全校最喜愛文學類圖書的學生約有:4400×=4(人).考點:4.條形統計圖;4.用樣本估計總體;4.扇形統計圖.19、(1)x≥;(1)x≤1;(3)答案見解析;(4)≤x≤1.【解析】
分別求出每一個不等式的解集,根據口訣:同大取大、同小取小、大小小大中間找、大大小小無解了確定不等式組的解集.【詳解】解:(I)解不等式(1),得x≥;(II)解不等式(1),得x≤1;(III)把不等式①和②的解集在數軸上表示出來:(IV)原不等式組的解集為:≤x≤1.故答案為x≥、x≤1、≤x≤1.【點睛】本題考查的是解一元一次不等式組,正確求出每一個不等式解集是基礎,熟知“同大取大;同小取小;大小小大中間找;大大小小找不到”的原則是解答此題的關鍵.20、見解析;.【解析】
(1)首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果;(2)找出點(x,y)在函數y=x+1的圖象上的情況,利用概率公式即可求得答案.【詳解】畫樹狀圖得:共有12種等可能的結果、、、、、、、、、、、;在所有12種等可能結果中,在函數的圖象上的有、、這3種結果,點在函數的圖象上的概率為.【點睛】本題考查的是用列表法或樹狀圖法求概率,一次函數圖象上點的坐標特征.注意樹狀圖法與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數與總情況數之比.21、(1)100,35;(2)補全圖形,如圖;(3)800人【解析】
(1)由共享單車人數及其百分比求得總人數m,用支付寶人數除以總人數可得百分比n的值;(2)總人數乘以網購人數的百分比可得其人數,用微信人數除以總人數求得百分比即可補全兩個圖形;(3)總人數乘以樣本中微信人數所占的百分比可得答案.【詳解】解:(1)∵被調查總人數為m=10÷10%=100人,∴用支付寶人數所占百分比n%=,∴m=100,n=35.(2)網購人數為100×15%=15人,微信人數所占百分比為,補全圖形如圖:(3)估算全校2000名學生中,最認可“微信”這一新生事物的人數為2000×40%=800人.【點睛】本題考查條形統計圖和扇形統計圖的信息關聯問題,樣本估計總體問題,從不同的統計圖得到必要的信息是解決問題的關鍵.22、(1)y=﹣2x+1;y=﹣80x【解析】
(1)根據OA、OB的長寫出A、B兩點的坐標,再用待定系數法求解一次函數的解析式,然后求得點C的坐標,進而求出反比例函數的解析式.(2)聯立方程組求解出交點坐標即可.(3)觀察函數圖象,當函數y=kx+b的圖像處于y=nx下方或與其有重合點時,x的取值范圍即為【詳解】(1)由已知,OA=6,OB=1,OD=4,∵CD⊥x軸,∴OB∥CD,∴△ABO∽△ACD,∴,∴,∴CD=20,∴點C坐標為(﹣4,20),∴n=xy=﹣80.∴反比例函數解析式為:y=﹣,把點A(6,0),B
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年上海高考英語作文深度解析及寫作備考指導
- 人胃腺癌細胞株AGS、SGC-7901增殖誘導配體mRNA的表達
- 2025年貴陽市南明區花溪大道旁新開發區域土地使用權出讓合同
- 2025年上海工程技術大學崗位聘任合同制管理崗位
- 福建省莆田市2024-2025學年高二下冊第一次(3月)月考數學試卷附解析
- 安徽省馬鞍山市2024-2025學年高二下冊4月期中數學試卷附解析
- 2025屆黑龍江齊齊哈爾市龍江縣中考二模數學試卷
- 2024年攀枝花市東區定向選聘社會招考社區工作者真題
- 2024年河池市產品質量檢驗所招聘考試真題
- 石大學前兒童保育學課件4-2手足口病
- 2025年廣東紅海灣發電有限公司招聘筆試參考題庫含答案解析
- 《烘焙生產SOP標準》課件
- 大學語文知到智慧樹章節測試課后答案2024年秋南昌大學
- 2025第二季度思想匯報范文
- 《大數據技術對社會發展的影響研究》5200字(論文)
- 一例前交通動脈瘤破裂伴蛛網膜下腔出血的護理查房
- 2024-2030年中國風電運維行業發展現狀規劃分析報告
- 2025年中考語文專題復習:寫作技巧 課件
- 護理漏執行醫囑不良事件
- 2024年重慶市九龍坡區某中學小升初數學試卷(含答案)
- 醫院培訓課件:《醫療廢物分類及管理》
評論
0/150
提交評論