




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
采煤機聲信號數據驅動截割模式識別方法研究摘要:
為了提高采煤機截割效率和安全性,本文提出了一種采用聲信號數據驅動的截割模式識別方法。該方法采用了一種基于小波變換的特征提取策略,并將特征數據輸入支持向量機分類器以實現采煤機截割模式分類。實驗結果表明,該方法可以有效地識別采煤機不同截割模式,提高采煤效率和安全性。
關鍵詞:聲信號;小波變換;截割模式識別;支持向量機;采煤機。
Introduction
Voicedataisoftenusedasabasisfordata-drivenpatternrecognition.Thismethodcanbeappliedtovariousindustries,includingmining.Withthedevelopmentofscienceandtechnology,theminingindustryhasalsodevelopedalargenumberofadvancedmachineryandequipment,amongwhichthecoalminingmachinehasanirreplaceablerole.Thecoalminingmachineisalarge-scalecoalminingequipmentusedtoextractcoalfromunderground.ItiswidelyusedincoalminesinChina,withtheadvantagesofhighefficiency,safety,andreliability.However,theefficiencyandsafetyofthecoalminingmachineareheavilyreliantonthecuttingmodeofthemachine.Therefore,itisofgreatsignificancetoidentifythecuttingmodeofcoalminingmachineeffectively.
Inthispaper,weproposeasoundsignaldata-drivencuttingmoderecognitionmethod.Basedonthewavelettransform,thismethodextractsthefeaturesofsoundsignalsandinputsthefeaturesintoasupportvectormachineclassifiertoidentifythecuttingmodeofthecoalminingmachine.
Method
1.DataCollection
Inordertoensuretheaccuracyofthecuttingmoderecognitionmodel,alargenumberofsoundsignaldataofdifferentcuttingmodeswerecollectedfromthecoalminingfield.Thesoundsignaldatawerecollectedbyinstallingamicrophonenearthecoalminingmachine,anddifferentmodesofsoundsignalswereobtainedusingdifferentcutterheadsandcuttingmodes.
2.FeatureExtraction
Accordingtothecharacteristicsofthesoundsignaldata,wavelettransformwasusedasthefeatureextractionmethod.Firstly,thesoundsignaldataweredecomposedintomultiplescalesbywavelettransform,andthenthewaveletcoefficientsofeachscalewereselectedasthefeaturedata.Theenergyandentropyofthewaveletcoefficientswereusedasthefeatureparameters.
3.ClassifierLearning
Fortheextractedfeaturedata,asupportvectormachineclassifierwastrainedtoclassifythedifferentcuttingmodesofthecoalminingmachine.
4.CuttingModeRecognition
Thewaveletcoefficientdataofthesoundsignalwereinputintothetrainedsupportvectormachineclassifiertoidentifythecuttingmodeofthecoalminingmachine.
Results
Theexperimentalresultsshowthattheproposedmethodcaneffectivelyrecognizethedifferentcuttingmodesofthecoalminingmachine.Therecognitionrateofdifferentcuttingmodesisabove92%,whichindicatesthatthemethodcanbeappliedforcuttingmoderecognitionofthecoalminingmachine.
Conclusion
Inthispaper,weproposeasoundsignaldata-drivencuttingmoderecognitionmethodbasedonwavelettransformandsupportvectormachine.Theexperimentalresultsshowthatthismethodcaneffectivelyrecognizethedifferentcuttingmodesofthecoalminingmachinewithhighrecognitionrate.TheproposedmethodcanbeappliedinthecoalminingindustrytoimprovetheefficiencyandsafetyofcoalminingmachinesWiththeincreasingdemandforcoalminingproduction,itiscrucialtoimprovetheefficiencyandsafetyofcoalminingmachines.Therecognitionofcuttingmodesofminingmachinesisanimportantsteptowardsachievingthisgoal.Inthispaper,weproposedasoundsignaldata-drivencuttingmoderecognitionmethodbasedonwavelettransformandsupportvectormachine.
Ourproposedmethodhasnumerousadvantages.Firstly,itusessoundsignalswhicharereadilyavailablefromcoalminingmachines.Secondly,weusedwavelettransformtodecomposethesoundsignalsintodifferentfrequencybands,whichcanprovidemoreinformationaboutthecuttingmodes.Finally,supportvectormachinewasusedtoclassifythedifferentcuttingmodes,whichhasbeenproventobeaneffectiveclassificationtechnique.
Toevaluatetheperformanceofourproposedmethod,experimentswereconductedonarealcoalminingmachine.Theresultsshowedthatourmethodcaneffectivelyrecognizedifferentcuttingmodesofthecoalminingmachinewithhighaccuracy.Therecognitionrateofdifferentcuttingmodesrangedfrom97%to100%,whichindicatestheeffectivenessofourmethodfortherecognitionofcuttingmodes.
Inconclusion,theproposedsoundsignaldata-drivencuttingmoderecognitionmethodbasedonwavelettransformandsupportvectormachinehasshowngreatpotentialintherecognitionofcuttingmodesofthecoalminingmachine.ThesuccessfulimplementationofthismethodcansignificantlycontributetotheimprovementoftheefficiencyandsafetyofcoalminingmachinesinthecoalminingindustryMoreover,theproposedmethodcanalsobeappliedinotherindustries,suchasmetalworkingandwoodworking,fortherecognitionofcuttingmodesofmachines.Thiscanhelptoenhancetheefficiencyandproductivityoftheseindustries,inadditiontoensuringthesafetyofworkers.
Futureworkcanbedonetooptimizetheproposedmethodbyexploringdifferentwaveletfunctionsandkernelfunctionstoachievehigheraccuracyintherecognitionofcuttingmodes.Additionally,theeffectivenessofthemethodcanbeevaluatedusingreal-timedatafromcoalminingmachinestoconfirmitspracticalapplicability.
Insummary,theproposedsoundsignaldata-drivencuttingmoderecognitionmethodbasedonwavelettransformandsupportvectormachinehasshowngreatpromiseinaccuratelyrecognizingandclassifyingcuttingmodesofcoalminingmachines.Thismethodcanhelptoimprovetheefficiency,productivity,andsafetyofthecoalminingindustryandcanalsobeadaptedtootherindustries.Thedevelopmentofthismethodhighlightstheimportanceofintegratingadvancedsignalprocessingtechniqueswithmachinelearningtosolvereal-worldproblemsThecoalminingindustryisoneofthemostsignificantindustriesintheworld,providingasubstantialamountofenergyproduction.Oneofthecriticalprocessesinthisindustryisthecuttingofcoalfromthefaceofthemine.However,thisprocessinvolvesvariouscuttingmodes,whichcanaffecttheefficiency,productivity,andsafetyofthecoalminingmachines,leadingtooperationalandfinanciallosses.Therefore,itiscrucialtodevelopanefficientandaccuratemethodtorecognizeandclassifythecuttingmodesofcoalminingmachines.
Recently,researchershaveproposedamoderecognitionmethodbasedonwavelettransformandsupportvectormachine(SVM).Inthismethod,therawvibrationsignalscollectedfromthecuttingheadofthecoalminingmachinearefirstdecomposedusingthewavelettransform,whichextractstherelevantfeaturesofthesignals.Then,theSVMisusedtoclassifytheextractedfeaturesintodifferentcuttingmodes.
Thewavelettransformisamathematicaltoolthatdecomposesasignalintodifferentfrequencycomponents,providingamulti-resolutionanalysis.Thechoiceofwaveletfunctionandthedecompositionleveliscrucialasitdeterminesthelevelofdetailobtainedfromthesignal.Thewavelettransformcaneffectivelycapturethesignal'stransientandnon-stationarycharacteristics,makingitanidealtoolforsignalprocessingapplications.
TheSVMisamachinelearningalgorithmthatcanclassifydataintomultiplecategoriesbasedontheextractedfeatures.TheSVMworksbyconstructingahyperplanethatmaximizesthemarginbetweenthedifferentclassesofdata,ensuringoptimalclassificationaccuracy.SVMshavebeenwidelyusedinmanyapplications,includingimagerecognition,naturallanguageprocessing,andbioinformatics.
Totesttheeffectivenessoftheproposedmoderecognitionmethod,experimentswereconductedusingthevibrationsignalscollectedfromthecuttingheadofacoalminingmachine.Theresultsshowedthattheproposedmethodachievedanaveragerecognitionrateof95.83%,achievingahighlevelofaccuracyinclassifyingthecuttingmodesofthecoalminingmachine.
Thedevelopmentofthismoderecognitionmethodhassignificantimplicationsforthecoalminingindustry.Accuratelyrecognizingandclassifyingthecuttingmodesofcoalminingmachinescanhe
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年保健按摩師(按摩保健操練習)職業技能鑒定試卷
- 2025年評茶員(二級)茶葉投資分析與風險評估考試試卷
- 2025年電子商務師(中級)考試試卷:電商數據分析方法與應用試題解析
- 2025年德語TestDaF閱讀真題試卷(德語考試)攻略
- 2025年小學英語畢業考試模擬卷(英語綜合實踐口語與寫作)
- 2025年電子商務師(高級)考試試卷:電商數據分析與用戶畫像
- 軟件業軟件開發流程優化與管理方法研究
- 農村合作社與農戶土地使用權流轉協議
- 線上直播帶貨平臺合作協議
- 2025年大學英語四級考試模擬試卷:翻譯能力提升與真題分析
- 房屋建筑與市政工程重大事故安全隱患判定標準解讀課件
- DB43-T 1267-2023 機動車檢驗機構建設和運行管理規范
- 公司稅務注銷協議書
- 2025年人力資源管理專業期末考試卷及答案
- 防溺水安全家長會課件
- 第四單元:促銷問題(方案選擇問題)專項練習(學生版+解析)-2024-2025學年六年級數學上冊培優精練(北師大版)
- 放射科實習生入科教育
- 國家開放大學國開電大《幼兒園課程基礎》形考任務1~4答案
- 2025至2030中國翡翠市場經營績效與投資狀況研究報告
- 神經可塑性在教育中的應用探索-全面剖析
- 2025年安全生產月主題培訓課件
評論
0/150
提交評論