




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
小學數學總復習資料
第一部分公式關系換算化聚
一、計算公式
1>正方形(C:周長S:面積a:邊長)
周長=邊長X4C=4a面積=邊長X邊長S=aXa
2、正方體(V:體積a:棱長)
表面積=棱長X棱長X65表=2乂2*6體積=棱長X棱長X棱長V=aXaXa
3、長方形(C:周長S:面積a:邊長)
周長=(長+寬)X2C=2(a+b)面積=長*寬S=ab
4、長方體(V:體積s:面積a:長b:寬h:高)
(1)表面積(長X寬+長X高+寬X高)X2S=2(ab+ah+bh)
(2)體積=長乂寬乂高V=abh
5、三角形(s:面積a:底h:高)
面積=底乂高+2s=ah4-2三角形高=面積X2+底
三角形底=面積X2?高
6、平行四邊形(s:面積a:底h:高)
面積=底乂高s=ah
7、梯形(s:面積a:上底b:下底h:高)
面積=(上底+卜底)X高+2s=(a+b)Xh4-2
8、圓形(S:面積C:周長Ji:園周率(1=直徑廠半徑)
⑴周長=直徑XJI=2XJiX半徑C=.nd=2Jir
⑵面積=半徑X半徑XJI
9、圓柱體(v:體積h:高s:底面積r:底面半徑c:底面周長)
(1)側面積=底面周長乂高=(±(2nr或nd)(2)表面積=側面積+底面積X2
⑶體積=底面積X高(4)體積=側面積+2X半徑
10、圓錐體(v:體積h:高s:底面積r:底面半徑)
體積=底面積X高+3
11、總數+總份數=平均數
12、和差問題的公式
(和+差)+2=大數(和—差)+2=小數
13、和倍問題
和?(倍數-1)=小數小數X倍數=大數(或者和一小數=大數)
14、差倍問題
差小(倍數-1)=小數小數X倍數=大數(或小數+差=大數)
15、相遇問題
相遇路程=速度和X相遇時間
相遇時間=相遇路程+速度和
速度和=相遇路程?相遇時間
16、濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量+溶液的重量X100%=濃度
溶液的重量x濃度=溶質的重量
溶質的重量?濃度=溶液的重量
17、利潤與折扣問題
利潤=售出價一成本
利潤率=利潤?成本X100%=(售出價+成本-1)X100%
漲跌金額=本金X漲跌百分比
利息=本金X利率X時間
稅后利息=本金X利率X時間X(1—20%)
二、數量關系:
1、每份數X份數=總數總數+每份數=份數總數一份數=每份數
2、1倍數X倍數=幾倍數兒倍數+1倍數=倍數兒倍數七倍數=1倍數
3、速度X時間=路程路程+速度=時間路程:時間=速度
4、單價義數量=總價總價+單價=數量總價+數量=單價
5、工作效率X工作時間=工作總量工作總量+工作效率=工作時間
工作總量+工作時間=工作效率
6、加數+加數=和和---個加數=另一個加數
7、被減數一減數=差被減數一差=減數差+減數=被減數
8、因數X因數=積積+一個因數=另一個因數
9、被除數+除數=商被除數+商=除數商X除數=被除數
三、換算化聚
1.長度單位換算
1千米=1000米1米=10分米1分米=10厘米
1米=100厘米1厘米=10毫米
2.面積單位換算
1平方千米=100公頃1公頃=10000平方米1平方米=100平方分米
1平方分米=100平方厘米1平方厘米=100平方毫米
3.體(容)積單位換算
1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升
1立方厘米=1毫升1立方米=1000升
4.重量單位換算
1噸=1000千克1千克=1000克1千克=1公斤
5.人民幣單位換算
1元=10角1角=10分1元=100分
6.時間單位換算
1世紀=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天,閏年2月29天平年全年365天,
閏年全年366天1日=24小時
1時=60分1分=60秒1時=3600秒
第二部分.小學數學基礎知識
第一章數和數的運算
一.概念
(-)整數
1.整數的意義
自然數和。都是整數。
2.自然數
我們在數物體的時候,用來表示物體個數的1,2,3……叫做自然數。
一個物體也沒有,用0表示。0也是自然數。
3.計數單位
一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數單位。
每相鄰兩個計數單位之間的進率都是10o這樣的計數法叫做十進制計數
法。
4.數位
計數單位按照一定的順序排列起來,它們所占的位置叫做數位。
5.數的整除
知識網絡圖
整數a除以整數b(bWO),除得的商是整數而沒有余數,我們就說a能被b整除,
或者說b能整除a;
如果數a能被數b(bW0)整除,a就叫做b的倍數,b就叫做a的約數(或a的因
數)。倍數和約數是相互依存的。
因為35能被7整除,所以35是7的倍數,7是35的約數。
一個數的約數的個數是有限的,其中最小的約數是1,最大的約數是它本身。
例如:10的約數有1、2、5、10,其中最小的約數是1,最大的約數是10。
一個數的倍數的個數是無限的,其中最小的倍數是它本身。3的倍數有:3、6、
9、12……其中最小的倍數是3,沒有最大的倍數。
個位上是0、2、4、6、8的數,都能被2整除,例如:202、480、304,都能被
2整除。
個位上是。或5的數,都能被5整除,例如:5、30、405都能被5整除。
一個數的各位上的數的和能被3整除,這個數就能被3整除,例如:12、108、
204都能被3整除。
一個數各位數上的和能被9整除,這個數就能被9整除。
能被3整除的數不一定能被9整除,但是能被9整除的數一定能被3整除。
一個數的末兩位數能被4(或25)整除,這個數就能被4(或25)整除。例如:
16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一個數的末三位數能被8(或125)整除,這個數就能被8(或125)整除。例
如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125
整除。
能被2整除的數叫做偶數。
不能被2整除的數叫做奇數。
0也是偶數。自然數按能否被2整除的特征可分為奇數和偶數。
一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數),100以
內的質數有:2、3、5、1、H、13、17、19、23、29、31、37、41、43、47、
53、59、61、67、71、73、79、83、89、970
一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數,例如4、6、
8、9、12都是合數。
1不是質數也不是合數,自然數除了1外,不是質數就是合數。如果把自然數按
其約數的個數的不同分類,可分為質數、合數和1。
每個合數都可以寫成幾個質數相乘的形式。其中每個質數都是這個合數的因數,
叫做這個合數的質因數,例如15=3X5,3和5叫做15的質因數。
把一個合數用質因數相乘的形式表示出來,叫做分解質因數。
例如把28分解質因數。
兒個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做這兒個數
的最大公約數,例如12的約數有1、2、3、4、6、12;18的約數有1、2、3、6、
9、18。其中,1、2、3、6是12和18的公約數,6是它們的最大公約數。
公約數只有1的兩個數,叫做互質數,成互質關系的兩個數,有下列兒種情況:
1和任何自然數互質。
相鄰的兩個自然數互質。
兩個不同的質數互質。
當合數不是質數的倍數時,這個合數和這個質數互質。
兩個合數的公約數只有1時一,這兩個合數互質,如果兒個數中任意兩個都互質,
就說這幾個數兩兩互質。
如果較小數是較大數的約數,那么較小數就是這兩個數的最大公約數。
如果兩個數是互質數,它們的最大公約數就是1。
幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個,叫做這幾個數
的最小公倍數,如2的倍數有2、4、6、8、10、12、14、16、18……
3的倍數有3、6、9、12、15、18……其中6、12、18……是2、3的公倍數,
6是它們的最小公倍數。
如果較大數是較小數的倍數,那么較大數就是這兩個數的最小公倍數。
如果兩個數是互質數,那么這兩個數的積就是它們的最小公倍數。
幾個數的公約數的個數是有限的,而幾個數的公倍數的個數是無限的。
(二)小數
1.小數的意義。
把整數1平均分成10份、100份、1000份……得到的十分之幾、百分之幾、
千分之兒……可以用小數表示。
一位小數表示十分之兒,兩位小數表示百分之兒,三位小數表示千分之兒……
一個小數由整數部分、小數部分和小數點部分組成。數中的圓點叫做小數點,
小數點左邊的數叫做整數部分,小數點左邊的數叫做整數部分,小數點右邊的
數叫做小數部分。
在小數里,每相鄰兩個計數單位之間的進率都是10。小數部分的最高分數單位
“十分之一”和整數部分的最低單位“一”之間的進率也是10o
2.小數的分類。
純小數:整數部分是零的小數,叫做純小數。例如:0.25、0.368都是純小數。
帶小數:整數部分不是零的小數,叫做帶小數。例如:3.25、5.26都是帶小數。
有限小數:小數部分的數位是有限的小數,叫做有限小數。例如:41.7、25.3、
0.23都是有限小數。
無限小數:小數部分的數位是無限的小數,叫做無限小數。例如:4.33……,
3.1415926……
無限不循環小數:一個數的小數部分,數字排列無規律且位數無限,這樣的小
數叫做無限不循環小數。例如:3.565756……
循環小數:一個數的小數部分,有一個數字或者幾個數字依次不斷重復出現,
這個數叫做循環小數。例如:3.555...,0.0333...,12.109109...
一個循環小數的小數部分,依次不斷重復出現的數字叫做這個循環小數的循環
節。例如:3.99……的循環節是“9”,0.5454……的循環節是“54”。
純循環小數:循環節從小數部分第一位開始的,叫做純循環小數。例如:
3.111……,0.5656……
混循環小數:循環節不是從小數部分第一位開始的,叫做混循環小數。
3.1222...,0.03333...
寫循環小數的時候,為了簡便,小數的循環部分只需寫出一個循環節,并在這
個循環節的首、末位數字上各點一個圓點。如果循環節只有一個數字,就只在
它的上面點一個點。例如:3.777……簡寫作0.5302302……
(三)分數
1.分數的意義
把單位“1”平均分成若干份,表示這樣的一份或者兒份的數叫做分數。
在分數里,中間的橫線叫做分數線;分數線下面的數,叫做分母,表示把單位
“1”平均分成多少份;分數線下面的數叫做分子,表示有這樣的多少份。
把單位“1”平均分成若干份,表示其中的一份的數,叫做分數單位。
2.分數的分類
真分數:分子比分母小的分數叫做真分數。真分數小于1。
假分數:分子比分母大或者分子和分母相等的分數,叫做假分數。假分數大于
或等于lo
帶分數:假分數可以寫成整數與真分數合成的數,通常叫做帶分數。
3.約分和通分
把一個分數化成同它相等但是分子、分母都比較小的分數,叫做約分。
分子分母是互質數的分數,叫做最簡分數。
把異分母分數分別化成和原來分數相等的同分母分數,叫做通分。
(四)百分數
1.表示一個數是另一個數的百分之兒的數叫做百分數,也叫做百分率或百分比。
百分數通常用〃%〃來表示。百分號是表示百分數的符號。
二.方法
(-)數的讀法和寫法
L整數的讀法:從高位到低位,一級一級地讀。讀億級、萬級時,先按照個級
的讀法去讀,再在后面加一個“億”或“萬”字。每一級末尾的0都不讀出來,
其它數位連續有幾個0都只讀一個零。
2.整數的寫法:從高位到低位,一級一級地寫,哪一個數位上一個單位也沒有,
就在那個數位上寫Oo
3.小數的讀法:讀小數的時候,整數部分按照整數的讀法讀,小數點讀作“點”,
小數部分從左向右順次讀出每一位數位上的數字。
4.小數的寫法:寫小數的時候,整數部分按照整數的寫法來寫,小數點寫在個
位右下角,小數部分順次寫出每一個數位上的數字。
5.分數的讀法:讀分數時,先讀分母再讀“分之”然后讀分子,分子和分母按
照整數的讀法來讀。
6.分數的寫法:先寫分數線,再寫分母,最后寫分子,按照整數的寫法來寫。
7.百分數的讀法:讀百分數時,先讀百分之,再讀百分號前面的數,讀數時按
照整數的讀法來讀。
8.百分數的寫法:百分數通常不寫成分數形式,而在原來的分子后面加上百分
號“%”來表示。
(二)數的改寫
一個較大的多位數,為了讀寫方便,常常把它改寫成用“萬”或“億”作單位
的數。有時還可以根據需要,省略這個數某一位后面的數,寫成近似數。
1.準確數:在實際生活中,為了計數的簡便,可以把一個較大的數改寫成以萬
或億為單位的數。改寫后的數是原數的準確數。例如把1254300000改寫成以萬
做單位的數是125430萬;改寫成以億做單位的數12.543億。
2.近似數:根據實際需要,我們還可以把一個較大的數,省略某一位后面的尾
數,用一個近似數來表示。例如:1302490015省略億后面的尾數是13億。
3.四舍五入法:要省略的尾數的最高位上的數是4或者比4小,就把尾數去掉;
如果尾數的最高位上的數是5或者比5大,就把尾數舍去,并向它的前一位進lo
例如:省略345900萬后面的尾數約是35萬。省略4725097420億后面的尾數約
是47億。
4.大小比較
1.比較整數大小:比較整數的大小,位數多的那個數就大,如果位數相同,就
看最高位,最高位上的數大,那個數就大;最高位上的數相同,就看下一位,
哪一位上的數大那個數就大。
2.比較小數的大小:先看它們的整數部分,整數部分大的那個數就大;整數部
分相同的,十分位上的數大的那個數就大;十分位上的數也相同的,百分位上
的數大的那個數就大……
3.比較分數的大小:分母相同的分數,分子大的分數比較大;分子相同的數,分
母小的分數大分數的分母和分子都不相同的,先通分,再比較兩個數的大小。
(三)數的互化
1.小數化成分數:原來有兒位小數,就在1的后面寫兒個零作分母,把原來的
小數去掉小數點作分子,能約分的要約分。
2.分數化成小數:用分母去除分子。能除盡的就化成有限小數,有的不能除盡,
不能化成有限小數的,一般保留三位小數。
3.一個最簡分數,如果分母中除了2和5以外,不含有其他的質因數,這個分
數就能化成有限小數;如果分母中含有2和5以外的質因數,這個分數就不能
化成有限小數。
4.小數化成百分數:只要把小數點向右移動兩位,同時在后面添上百分號。
5.百分數化成小數:把百分數化成小數,只要把百分號去掉,同時把小數點向
左移動兩位。
6.數化成百分數:通常先把分數化成小數(除不盡時,通常保留三位小數),
再把小數化成百分數。
7.百分數化成小數:先把百分數改寫成分數,能約分的要約成最簡分數。
(四)數的整除
1.把一個合數分解質因數,通常用短除法。先用能整除這個合數的質數去除,
一直除到商是質數為止,再把除數和商寫成連乘的形式。
2.求幾個數的最大公約數的方法是:先用這幾個數的公約數連續去除,一直除
到所得的商只有公約數1為止,然后把所有的除數連乘求積,這個積就是這兒
個數的的最大公約數。
3.求幾個數的最小公倍數的方法是:先用這幾個數(或其中的部分數)的公約
數去除,一直除到互質(或兩兩互質)為止,然后把所有的除數和商連乘求積,
這個積就是這幾個數的最小公倍數。
4.成為互質關系的兩個數:1和任何自然數互質;相鄰的兩個自然數互質;當合
數不是質數的倍數時,這個合數和這個質數互質;兩個合數的公約數只有1時,
這兩個合數互質。
(五)約分和通分
約分的方法:用分子和分母的公約數(1除外)去除分子、分母;通常要除到得
出最簡分數為止。
通分的方法:先求出原來的幾個分數分母的最小公倍數,然后把各分數化成用
這個最小公倍數作分母的分數。
三.性質和規律
(一)商不變的規律
商不變的規律:在除法里,被除數和除數同時擴大或者同時縮小相同的倍,商
不變。
(二)小數的性質
小數的性質:在小數的末尾添上零或者去掉零小數的大小不變。
(三)小數點位置的移動引起小數大小的變化
1.小數點向右移動一位,原來的數就擴大10倍;小數點向右移動兩位,原來的
數就擴大100倍;小數點向右移動三位,原來的數就擴大1000倍……
2.小數點向左移動一位,原來的數就縮小10倍;小數點向左移動兩位,原來的
數就縮小100倍;小數點向左移動三位,原來的數就縮小1000倍……
3.小數點向左移或者向右移位數不夠時,要用補足位。
(四)分數的基本性質
分數的基本性質:分數的分子和分母都乘以或者除以相同的數(零除外),分
數的大小不變。
(五)分數與除法的關系
1.被除數+除數=被除數/除數
2.因為零不能作除數,所以分數的分母不能為零。
3.被除數相當于分子,除數相當于分母。
四.運算的意義
(一)整數四則運算
1整數加法:
把兩個數合并成一個數的運算叫做加法。
在加法里,相加的數叫做加數,加得的數叫做和。加數是部分數,和是總數。
加數+加數=和一個加數=和一另一個加數
2整數減法:
已知兩個加數的和與其中的一個加數,求另一個加數的運算叫做減法。
在減法里,已知的和叫做被減數,已知的加數叫做減數,未知的加數叫做差。
被減數是總數,減數和差分別是部分數。
加法和減法互為逆運算。
求幾個相同加數的和的簡便運算叫做乘法。
在乘法里,相同的加數和相同加數的個數都叫做因數。相同加數的和叫做積。
在乘法里,0和任何數相乘都得0.1和任何數相乘都的任何數。
一個因數X一個因數=積一個因數=積+另一個因數
4整數除法:
已知兩個因數的積與其中一個因數,求另一個因數的運算叫做除法。
在除法里,已知的積叫做被除數,已知的一個因數叫做除數,所求的因數叫做
商。
乘法和除法互為逆運算。
在除法里,0不能做除數。因為。和任何數相乘都得0,所以任何一個數除以0,
均得不到一個確定的商。
被除數:除數=商除數=被除數+商被除數=商乂除數
(二)小數四則運算
1.小數加法:
小數加法的意義與整數加法的意義相同。是把兩個數合并成一個數的運算。
2.小數減法:
小數減法的意義與整數減法的意義相同。已知兩個加數的和與其中的一個加數,
求另一個加數的運算.
3.小數乘法:
小數乘整數的意義和整數乘法的意義相同,就是求幾個相同加數和的簡便運算;
一個數乘純小數的意義是求這個數的十分之幾、百分之幾、千分之幾……是多
少。
4.小數除法:
小數除法的意義與整數除法的意義相同,就是已知兩個因數的積與其中一個因
數,求另一個因數的運算。
5.乘方:
求兒個相同因數的積的運算叫做乘方。例如3X3=32
(三)分數四則運算
1.分數加法:
分數加法的意義與整數加法的意義相同。是把兩個數合并成一個數的運算。
2.分數減法:
分數減法的意義與整數減法的意義相同。已知兩個加數的和與其中的一個加數,
求另一個加數的運算。
3.分數乘法:
分數乘法的意義與整數乘法的意義相同,就是求幾個相同加數和的簡便運算。
4.乘積是1的兩個數叫做互為倒數。
5.分數除法:
分數除法的意義與整數除法的意義相同。就是已知兩個因數的積與其中一個因
數,求另一個因數的運算。
(四)運算定律
1.加法交換律:
兩個數相加,交換加數的位置,它們的和不變,即a+b=b+a
2.加法結合律:
三個數相加,先把前兩個數相加,再加上第三個數;或者先把后兩個數相加,
再和第一個數相加它們的和不變,即(a+b)+c=a+(b+c)
3.乘法交換律:
兩個數相乘,交換因數的位置它們的積不變,即aXb=bXa
4.乘法結合律:
三個數相乘,先把前兩個數相乘,再乘以第三個數;或者先把后兩個數相乘,
再和第一個數相乘,它們的積不變,即(aXb)Xc=aX(bXc)
5.乘法分配律:
兩個數的和與一個數相乘,可以把兩個加數分別與這個數相乘再把兩個積相加,
即(a+b)Xc=aXc+bXc
6.減法的性質:
從一個數里連續減去兒個數,可以從這個數里減去所有減數的和,差不變,即
a-b-c=a-(b+c)
(五)運算法則
1.整數加法計算法則:
相同數位對齊,從低位加起,哪一位上的數相加滿十,就向前一位進一。
2.整數減法計算法則:
相同數位對齊,從低位加起,哪一位上的數不夠減,就從它的前一位退一作十,
和本位上的數合并在一起,再減。
3.整數乘法計算法則:
先用一個因數每一位上的數分別去乘另一個因數各個數位上的數,用因數哪一
位上的數去乘,乘得的數的末尾就對齊哪一位,然后把各次乘得的數加起來。
4.整數除法計算法則:
先從被除數的高位除起,除數是幾位數,就看被除數的前幾位;如果不夠除,
就多看一位,除到被除數的哪一位,商就寫在哪一位的上面。如果哪一位上不
夠商1,要補〃0〃占位。每次除得的余數要小于除數。
5.小數乘法法則:
先按照整數乘法的計算法則算出積,再看因數中共有幾位小數,就從積的右邊
起數出兒位,點上小數點;如果位數不夠,就用0補足。
6.除數是整數的小數除法計算法則:
先按照整數除法的法則去除,商的小數點要和被除數的小數點對齊;如果除到
被除數的末尾仍有余數,就在余數后面添0,再繼續除。
7.除數是小數的除法計算法則:
先移動除數的小數點,使它變成整數,除數的小數點也向右移動兒位(位數
不夠的補0),然后按照除數是整數的除法法則進行計算。
8.同分母分數加減法計算方法:
同分母分數相加減,只把分子相加減,分母不變。
9.異分母分數加減法計算方法:
先通分,然后按照同分母分數加減法的的法則進行計算。
10.帶分數加減法的計算方法:
整數部分和分數部分分別相加減,再把所得的數合并起來。
11.分數乘法的計算法則:
分數乘整數,用分數的分子和整數相乘的積作分子,分母不變;分數乘分數,
用分子相乘的積作分子,分母相乘的積作分母。
12.分數除法的計算法則:
甲數除以乙數(0除外),等于甲數乘乙數的倒數。
(六)運算順序
1.小數四則運算的運算順序和整數四則運算順序相同。
2.分數四則運算的運算順序和整數四則運算順序相同。
3.沒有括號的混合運算:
同級運算從左往右依次運算;兩級運算先算乘、除法,后算加減法。
4.有括號的混合運算:
先算小括號里面的,再算中括號里面的,最后算括號外面的。
5.第一級運算:
加法和減法叫做第一級運算。
6.第二級運算:
乘法和除法叫做第二級運算。
五應用
(-)整數和小數的應用
1.簡單應用題
(1)簡單應用題:只含有一種基本數量關系,或用一步運算解答的應用題,通
常叫做簡單應用題。
(2).解題步驟:
a審題理解題意:了解應用題的內容,知道應用題的條件和問題。讀題時,不丟
字不添字邊讀邊思考,弄明白題中每句話的意思。也可以復述條件和問題,幫
助理解題意。
b選擇算法和列式計算:這是解答應用題的中心工作。從題目中告訴什么,要求
什么著手,逐步根據所給的條件和問題,聯系四則運算的含義,分析數量關系,
確定算法,進行解答并標明正確的單位名稱。
C檢驗:就是根據應用題的條件和問題進行檢查看所列算式和計算過程是否正
確,是否符合題意。如果發現錯誤,馬上改正。
2.復合應用題
(1)有兩個或兩個以上的基本數量關系組成的,用兩步或兩步以上運算解答的
應用題,通常叫做復合應用題。
(2)含有三個已知條件的兩步計算的應用題。
求比兩個數的和多(少)幾個數的應用題。
比較兩數差與倍數關系的應用題。
(3)含有兩個已知條件的兩步計算的應用題。
已知兩數相差多少(或倍數關系)與其中一個數,求兩個數的和(或差)。
已知兩數之和與其中一個數,求兩個數相差多少(或倍數關系)。
(4)解答連乘連除應用題。
(5)解答三步計算的應用題。
(6)解答小數計算的應用題:小數計算的加法、減法、乘法和除法的應用題,
他們的數量關系、結構、和解題方式都與正式應用題基本相同,只是在已知數
或未知數中間含有小數。
d答案:根據計算的結果,先口答,逐步過渡到筆答。
(3)解答加法應用題:
a求總數的應用題:已知甲數是多少,乙數是多少,求甲乙兩數的和是多少。
b求比一個數多兒的數應用題:已知甲數是多少和乙數比甲數多多少,求乙數是
多少。
(4)解答減法應用題:
a求剩余的應用題:從已知數中去掉一部分,求剩下的部分。
b求兩個數相差的多少的應用題:已知甲乙兩數各是多少,求甲數比乙數多多少,
或乙數比甲數少多少。
求比一個數少兒的數的應用題:已知甲數是多少,,乙數比甲數少多少,求乙數
是多少。
(5)解答乘法應用題
a求相同加數和的應用題:已知相同的加數和相同加數的個數,求總數。
b求一個數的幾倍是多少的應用題:已知一個數是多少,另一個數是它的幾倍,
求另一個數是多少。
(6)解答除法應用題:
a把一個數平均分成幾份,求每一份是多少的應用題:已知一個數和把這個數平
均分成幾份的,求每一份是多少。
b求一個數里包含兒個另一個數的應用題:已知一個數和每份是多少,求可以分
成幾份。
C求一個數是另一個數的的幾倍的應用題:已知甲數乙數各是多少,求較大數是
較小數的兒倍。
d已知一個數的幾倍是多少,求這個數的應用題。
(7)常見的數量關系:
總價=單價x數量
路程=速度x時間
工作總量=工作時間x工效
總產量=單產量x數量
3.典型應用題
具有獨特的結構特征的和特定的解題規律的復合應用題,通常叫做典型應用題。
(1)平均數問題:平均數是等分除法的發展。
解題關鍵:在于確定總數量和與之相對應的總份數。
算術平均數:已知兒個不相等的同類量和與之相對應的份數,求平均每份是多
少。數量關系式:數量之和?數量的個數=算術平均數。
加權平均數:已知兩個以上若干份的平均數,求總平均數是多少。
數量關系式(部分平均數X權數)的總和+(權數的和)=加權平均數。
差額平均數:是把各個大于或小于標準數的部分之和被總份數均分,求的是標
準數與各數相差之和的平均數。
數量關系式:(大數一小數)+2=小數應得數最大數與各數之差的和土總份
數=最大數應給數最大數與個數之差的和小總份數=最小數應得數。
例:一輛汽車以每小時100千米的速度從甲地開往乙地,又以每小時60千米的
速度從乙地開往甲地。求這輛車的平均速度。
分析:求汽車的平均速度同樣可以利用公式。此題可以把甲地到乙地的路程設
為“1”,則汽車行駛的總路程為“2”,從甲地到乙地的速度為100,所用的時
間為,汽車從乙地到甲地速度為60千米,所用的時間是,汽車共行的時間為+
=,汽車的平均速度為2:=75(千米)(2)歸一問題:已知相互關聯的兩個量,
其中一種量改變,另一種量也隨之而改變,其變化的規律是相同的,這種問題
稱之為歸一問題。
根據求“單一量”的步驟的多少,歸一問題可以分為一次歸一問題,兩次歸一
問題。
根據球癡單一量之后,解題采用乘法還是除法,歸一問題可以分為正歸一問題,
反歸一問題。
一次歸一問題,用一步運算就能求出“單一量”的歸一問題。又稱“單歸一”
兩次歸一問題,用兩步運算就能求出“單一量”的歸一問題。又稱“雙歸一”
正歸一問題:用等分除法求出“單一量”之后,再用乘法計算結果的歸一問題。
反歸一問題:用等分除法求出“單一量”之后,再用除法計算結果的歸一問題。
解題關鍵:從已知的一組對應量中用等分除法求出一份的數量(單一量),然
后以它為標準,根據題目的要求算出結果。
數量關系式:單一量義份數=總數量(正歸一)
總數量+單一量=份數(反歸一)
例一個織布工人,在七月份織布4774米,照這樣計算,織布6930米,需要多
少天?
分析:必須先求出平均每天織布多少米,就是單一量。69304-(4774+31)=45
(天)
(3)歸總問題:是已知單位數量和計量單位數量的個數,以及不同的單位數量
(或單位數量的個數),通過求總數量求得單位數量的個數(或單位數量)。
特點:兩種相關聯的量,其中一種量變化,另一種量也跟著變化,不過變化的
規律相反,和反比例算法彼此相通。
數量關系式:單位數量X單位個數+另一個單位數量=另一個單位數量
單位數量X單位個數+另一個單位數量=另一個單位數量。
例修一條水渠,原計劃每天修800米,6天修完。實際4天修完,每天修了多少
米?
分析:因為要求出每天修的長度,就必須先求出水渠的長度。所以也把這類應
用題叫做“歸總問題”不同之處是“歸一”先求出單一量,再求總量,歸總問
題是先求出總量,再求單一量。800X64-4=1200(米)
(4)和差問題:已知大小兩個數的和,以及他們的差,求這兩個數各是多少的
應用題叫做和差問題。
解題關鍵:是把大小兩個數的和轉化成兩個大數的和(或兩個小數的和),然
后再求另一個數。
解題規律:(和+差)+2=大數大數一差二小數
(和一差)+2=小數和一小數=大數
例某加工廠甲班和乙班共有工人94人,因工作需要臨時從乙班調46人到甲班
工作,這時乙班比甲班人數少12人,求原來甲班和乙班各有多少人?
分析:從乙班調46人到甲班,對于總數沒有變化,現在把乙數轉化成2個乙班,
即94—12,由此得到現在的乙班是(94—12)+2=41(人),乙班在調出46人
之前應該為41+46=87(人),甲班為94-87=7(人)
(5)和倍問題:已知兩個數的和及它們之間的倍數關系,求兩個數各是多少
的應用題,叫做和倍問題。
解題關鍵:找準標準數(即1倍數)一般說來,題中說是“誰”的兒倍,把誰
就確定為標準數。求出倍數和之后,再求出標準的數量是多少。根據另一個數
(也可能是兒個數)與標準數的倍數關系,再去求另一個數(或幾個數)的數
量。
解題規律:和+倍數和=標準數標準數X倍數=另一個數
例:汽車運輸場有大小貨車115輛,大貨車比小貨車的5倍多7輛,運輸場有大
貨車和小汽車各有多少輛?
分析:大貨車比小貨車的5倍還多7輛,這7輛也在總數115輛內,為了使總
數與(5+1)倍對應,總車輛數應(115-7)輛。
列式為(115-7)4-(5+1)=18(輛),18X5+7=97(輛)
(6)差倍問題:已知兩個數的差,及兩個數的倍數關系,求兩個數各是多少的
應用題。
解題規律:兩個數的差小(倍數-1)=標準數標準數X倍數=另一個數。
例甲乙兩根繩子,甲繩長63米,乙繩長29米,兩根繩剪去同樣的長度,結果
甲所剩的長度是乙繩長的3倍,甲乙兩繩所剩長度各多少米?各減去多少米?
分析:兩根繩子剪去相同的一段,長度差沒變,甲繩所剩的長度是乙繩的3倍,
實比乙繩多(3-1)倍,以乙繩的長度為標準數。列式(63-29)4-(3-1)=17
(米)…乙繩剩下的長度,17X3=51(米)…甲繩剩下的長度,29-17=12(米)…
剪去的長度。
(7)行程問題:關于走路、行車等問題,一般都是計算路程、時間、速度,叫
做行程問題。解答這類問題首先要搞清楚速度、時間、路程、方向、杜速度和、
速度差等概念,了解他們之間的關系,再根據這類問題的規律解答。
解題關鍵及規律:
同時同地相背而行:路程=速度和X時間。
同時相向而行:相遇時間=速度和X時間
同時同向而行(速度慢的在前,快的在后):追及時間=路程速度差。
同時同地同向而行(速度慢的在后,快的在前):路程=速度差X時間。
例甲在乙的后面28千米,兩人同時同向而行,甲每小時行16千米,乙每小時
行9千米,甲幾小時追上乙?
分析:甲每小時比乙多行(16-9)千米,也就是甲每小時可以追近乙(16-9)
千米,這是速度差。
已知甲在乙的后面28千米(追擊路程),28千米里包含著幾個(16-9)千米,
也就是追擊所需要的時間。列式28+(16-9)=4(小時)
(8)流水問題:一般是研究船在“流水”中航行的問題。它是行程問題中比較
特殊的一種類型,它也是一種和差問題。它的特點主要是考慮水速在逆行和順
行中的不同作用。
船速:船在靜水中航行的速度。
水速:水流動的速度。
順水速度:船順流航行的速度。
逆水速度:船逆流航行的速度。
順速=船速+水速
逆速=船速一水速
解題關鍵:因為順流速度是船速與水速的和,逆流速度是船速與水速的差,所
以流水問題當作和差問題解答。解題時要以水流為線索
解題規律:船行速度=(順水速度+逆流速度)+2
流水速度=(順流速度-逆流速度);2
路程=順流速度X順流航行所需時間
路程=逆流速度X逆流航行所需時間
例一只輪船從甲地開往乙地順水而行,每小時行28千米,到乙地后,又逆水航
行,回到甲地。逆水比順水多行2小時,已知水速每小時4千米。求甲乙兩地
相距多少千米?
分析:此題必須先知道順水的速度和順水所需要的時間,或者逆水速度和逆水
的時間。已知順水速度和水流速度,因此不難算出逆水的速度,但順水所用的
時間,逆水所用的時間不知道,只知道順水比逆水少用2小時,抓住這一點,
就可以就能算出順水從甲地到乙地的所用的時間,這樣就能算出甲乙兩地的路
程。列式為28-4X2=20(千米)20X2=40(千米)404-(4X2)=5(小時)
28X5=140(千米)。
(9)還原問題:已知某未知數,經過一定的四則運算后所得的結果,求這個未
知數的應用題,我們叫做還原問題。
解題關鍵:要弄清每一步變化與未知數的關系。
解題規律:從最后結果出發,采用與原題中相反的運算(逆運算)方法,逐步
推導出原數。
根據原題的運算順序列出數量關系,然后采用逆運算的方法計算推導出原數。
解答還原問題時注意觀察運算的順序。若需要先算加減法,后算乘除法時別忘
記寫括號。
例某小學三年級四個班共有學生168人,如果四班調3人到三班,三班調6人
到二班,二班調6人到一班,一班調2人到四班,則四個班的人數相等,四個
班原有學生多少人?
分析:當四個班人數相等時,應為168?4,以四班為例,它調給三班3人,又
從一班調入2人,所以四班原有的人數減去3再加上2等于平均數。四班原有
人數列式為168+4-2+3=43(人)
一班原有人數列式為168?4-6+2=38(人);二班原有人數列式為
1684-4-6+6=42(人)三班原有人數列式為168+4-3+6=45(人)。
(10)植樹問題:這類應用題是以“植樹”為內容。凡是研究總路程、株距、
段數、棵樹四種數量關系的應用題,叫做植樹問題。
解題關鍵:解答植樹問題首先要判斷地形,分清是否封閉圖形,從而確定是沿
線段植樹還是沿周長植樹,然后按基本公式進行計算。
解題規律:沿線段植樹.
棵樹=段數+1棵樹=總路程+株距+1
株距=總路程+(棵樹T)總路程二株距X(棵樹-1)
沿周長植樹
棵樹=總路程+株距
株距=總路程七棵樹
總路程=株距X棵樹
例沿公路一旁埋電線桿301根,每相鄰的兩根的間距是50米。后來全部改裝,
只埋了201根。求改裝后每相鄰兩根的間距。
分析:本題是沿線段埋電線桿,要把電線桿的根數減掉一。
列式為50X(301-1)+(201-1)=75(米)
(11)盈虧問題:是在等分除法的基礎上發展起來的。他的特點是把一定數量
的物品,平均分配給一定數量的人,在兩次分配中,一次有余,一次不足(或
兩次都有余),或兩次都不足),已知所余和不足的數量,求物品適量和參加
分配人數的問題,叫做盈虧問題。
解題關鍵:盈虧問題的解法要點是先求兩次分配中分配者沒份所得物品數量的
差,再求兩次分配中各次共分物品的差(也稱總差額),用前一個差去除后一
個差,就得到分配者的數,進而再求得物品數。
解題規律:總差額+每人差額=人數
總差額的求法可以分為以下四種情況:
第一次多余,第二次不足,總差額=多余+不足
第一次正好,第二次多余或不足,總差額=多余或不
第一次多余,第二次也多余,總差額=大多余-小多余
第一次不足,第二次也不足,總差額=大不足-小不足
例參加美術小組的同學,每個人分的相同的支數的色筆,如果小組10人,則多
25支,如果小組有12人,色筆多余5支。求每人分得幾支?共有多少支色鉛筆
?
分析:每個同學分到的色筆相等。這個活動小組有12人,比10人多2人,
而色筆多出了(25-5)=20支,2個人多出20支,一個人分得10支。
列式為(25-5)4-(12-10)=10(支)10X12+5=125(支)
(12)年齡問題:將差為一定值的兩個數作為題中的一個條件,這種應用題被
稱為“年齡問題”。
解題關鍵:年齡問題與和差、和倍、差倍問題類似,主要特點是隨著時間的變
化,年歲不斷增長,但大小兩個不同年齡的差是不會改變的,因此,年齡問題
是一種“差不變”的問題,解題時,要善于利用差不變的特點。
例父親48歲,兒子21歲。問兒年前父親的年齡是兒子的4倍?
分析:父子的年齡差為48-21=27(歲)。由于幾年前父親年齡是兒子的4倍,
可知父子年齡的倍數差是(4-1)倍。這樣可以算出幾年前父子的年齡,從而可
以求出兒年前父親的年齡是兒子的4倍。
列式為:21-(48-21).(4-1)=12(年)
(13)雞兔問題:已知“雞兔”的總頭數和總腿數。求“雞”和“兔”各多少
只的一類應用題。通常稱為“雞兔問題”又稱雞兔同籠問題
解題關鍵:解答雞兔問題一般采用假設法,假設全是一種動物(如全是“雞”
或全是“兔”,然后根據出現的腿數差,可推算出某一種的頭數。
解題規律:(總腿數一雞腿數X總頭數)—一只雞兔腿數的差=兔子只數
兔子只數=(總腿數-2X總頭數):2
如果假設全是兔子,可以有下面的式子:
雞的只數二(4X總頭數-總腿數)+2
兔的頭數=總頭數-雞的只數
例雞兔同籠共50個頭,170條腿。問雞兔各有多少只?
兔子只數(170-2X50)+2=35(只)
雞的只數50-35=15(只)
(二)分數和百分數的應用
1.分數加減法應用題:
分數加減法的應用題與整數加減法的應用題的結構、數量關系和解題方法基本
相同,所不同的只是在已知數或未知數中含有分數。
2.分數乘法應用題:
是指已知一個數,求它的兒分之兒是多少的應用題。
特征:已知單位“1”的量和分率,求與分率所對應的實際數量。
解題關鍵:準確判斷單位“1”的量。找準要求問題所對應的分率,然后根據一
個數乘分數的意義正確列式。
3.分數除法應用題:
求一個數是另一個數的幾分之幾(或百分之幾)是多少。
特征:已知一個數和另一個數,求一個數是另一個數的兒分之兒或百分之幾。“一
個數”是比較量,“另一個數”是標準量。求分率或百分率,也就是求他們的倍
數關系。
解題關鍵:從問題入手,搞清把誰看作標準的數也就是把誰看作了“單位一”,
誰和單位一的量作比較,誰就作被除數。
甲是乙的幾分之幾(百分之幾):甲是比較量,乙是標準量,用甲除以乙。
甲比乙多(或少)兒分之兒(百分之兒):甲減乙比乙多(或少兒分之兒)或
(百分之幾)。關系式(甲數減乙數)/乙數或(甲數減乙數)/甲數。
已知一個數的幾分之幾(或百分之幾),求這個數。
特征:已知一個實際數量和它相對應的分率,求單位“1”的量。
解題關鍵:準確判斷單位“1”的量把單位“1”的量看成x根據分數乘法的意義列方
程,或者根據分數除法的意義列算式,但必須找準和分率相對應的已知實際
數量。
4.出勤率
發芽率=發芽種子數/試驗種子數x100%
小麥的出粉率=面粉的重量/小麥的重量xlOO%
產品的合格率=合格的產品數/產品總數xlOO%
職工的出勤率=實際出勤人數/應出勤人數xlOO%
5.工程問題:
是分數應用題的特例,它與整數的工作問題有著密切的聯系。它是探討工作總
量、工作效率和工作時間三個數量之間相互關系的一種應用題。
解題關鍵:把工作總量看作單位“1;'工作效率就是工作時間的倒數,然后根據
題目的具體情況,靈活運用公式。
數量關系式:
工作總量=工作效率X工作時間
工作效率=工作總量+工作時間
工作時間=工作總量+工作效率
工作總量+工作效率和=合作時間
6.納稅
納稅就是把根據國家各種稅法的有關規定,按照一定的比率把集體或個人收入
的一部分繳納給國家。
繳納的稅款叫應納稅款。
應納稅額與各種收入的(銷售額、營業額、應納稅所得額……)的比率叫做稅
率。
利息
存入銀行的錢叫做本金。
取款時銀行多支付的錢叫做利息。
利息與本金的比值叫做利率。
利息=本金X利率X時間
第二章.度量衡
一.長度
(-)什么是長度
長度是一維空間的度量。
(二)長度常用單位
*公里(km)*米血)*分米(dm)*厘米(cm)*毫米(mm)*微米(um)
(三)單位之間的換算
*1毫米=1000微米*1厘米=10毫米*1分米=10厘米
1米=1000毫米*1千米=1000米
—.面積
(―)什么是面積
面積,就是物體所占平面的大小。對立體物體的表面的多少的測量一般稱表面
積。
(二)常用的面積單位
*平方毫米*平方厘米*平方分米*平方米*平方千米
(三)面積單位的換算
*1平方厘米=100平方毫米*1平方分米=100平方厘米
*1平方米=100平方分米
*1公傾=10000平方米*1平方公里=100公頃
三.體積和容積
(一)什么是體積、容積
體積,就是物體所占空間的大小。
容積,箱子、油桶、倉庫等所能容納物體的體積,通常叫做它們的容積。
(二)常用單位
1.體積單位
*立方米*立方分米*立方厘米
2.容積單位*升*毫升
(三)單位換算
1.體積單位
*1立方米=1000立方分米
*1立方分米=1000立方厘米
2.容積單位
*1升=1000毫升
*1升=1立方米
*1毫升=1立方厘米
四.質量
(-)什么是質量
質量,就是表示表示物體有多重。
(二)常用單位
*噸t*千克kg**克g
(三)常用換算
*一噸=1000千克
*1千克=1000克
五.時間
(一)什么是時間
是指有起點和終點的一段時間
(二)常用單位
世紀、年、月、日、時、分、秒
(三)單位換算
*1世紀=100年
*1年=365天平年
*一年=366天閏年
*一、三、五、七、八、十、十二是大月大月有31天
*四、六、九、H^一是小月小月小月有30天
*平年2月有28天閏年2月有29天
*1天=24小時
*1小時=60分
*一分=60秒
六.貨幣
(-)什么是貨幣
貨幣是充當一切商品的等價物的特殊商品。貨幣是價值的一般代表,可以購買
任何別的商品。
(二)常用單位
*元*角*分
(三)單位換算
*1元=10角
*1角=10分
第三章代數初步知識
一、用字母表示數
1.用字母表示數的意義和作用
*用字母表示數,可以把數量關系簡明的表達出來,同時也可以表示運算的結
果。
2.用字母表示常見的數量關系、運算定律和性質、幾何形體的計算公式
(1)常見的數量關系
路程用s表示,速度v用表示,時間用t表示,三者之間的關系:
s=vt
v=s/t
t=s/v
總價用a表示,單價用b表示,數量用c表示,三者之間的關系:
a=bc
b=a/c
c=a/b
(2)運算定律和性質
加法交換律:a+b=b+a
加法結合律:(a+b)+c=a+(b+c)
乘法交換律:ab=ba
乘法結合律:(ab)c=a(bc)
乘法分配律:(a+b)c=ac+bc
減法的性質:a-(b+c)=a-b-c
(3)用字母表示兒何形體的公式
長方形的長用a表示,寬用b表示,周長用c表示,面積用s表示。
c=2(a+b)
s=ab
正方形的邊長a用表示,周長用c表示,面積用s表示
c=4a
s=a2
平行四邊形的底a用表示,高用h表示,面積用s表示
s=ah
三角形的底用a表示,高用h表示,面積用s表示。
s=ah/2
梯形的上底用a表示,下底b用表示,高用h表示,中位線用m表示,面積用s表
示
s=(a+b)h/2
s=mh
圓的半徑用r表示,直徑用d表示,周長用c表示,面積用s表示。
c=nd=2nr
s=FIr2
扇形的半徑用r表示,n表示圓心角的度數,面積用s表示
s=rinr2/360
長方體的長用a表示,寬用b表示,高用h表示,表面積用s表示,體積用v表示。
v=sh
s=2(ab+ah+bh)
v=abh
正方體的棱長用a表示,底面周長c用表示,底面積用s表示,體積用v表示.
s=6a2
v=a3
圓柱的高用h表示,底面周長用c表示,底面積用s表示,體積用v表示.
5側=(±
S表=5側+2$底
v=sh
圓錐的高用h表示,底面積用s表示,體積用v表示.
v=sh/3
3用字母表示數的寫法
數字和字母、字母和字母相乘時,乘號可以記作,或者省略不寫,數字
要寫在字母的前面。
當“1”與任何字母相乘時,“1”省略不寫。
在一個問題中,同一個字母表示同一個量,不同的量用不同的字母表示。
用含有字母的式子表示問題的答案時,除數一般寫成分母,如果式子中有加
號或者減號,要先用括號把含字母的式子括起來,再在括號后面寫上單位的
名稱。
4將數值代入式子求值
*把具體的數代入式子求值時,要注意書寫格式:先寫出字母等于兒,然后寫
出原式,再把數代入式子求值。字母表示的是數,后面不寫單位名稱。
*同一個式子,式子中所含字母取不同的數值,那么所求出的式子的值也不相
同。
二、簡易方程
(一)方程和方程的
1.方程:含有未知數的等式叫做方程。
注意方程是等式,又含有未知數,兩者缺一不可。
方程和算術式不同。算術式是一個式子,它由運算符號和已知數組成,它表
示未知數。方程是一個等式,在方程里的未知數可以參加運算,并且只有當
未知數為特定的數值時,方程才成立。
2.方程的解:使方程左右兩邊相等的未知數的值,叫做方程的解。
三、解方程
解方程,求方程的解的過程叫做解方程。
四、列方程解應用題
1?列方程解應用題的意義
用方程式去解答應用題求得應用題的未知量的方法。
2.列方程解答應用題的步驟
弄清題意,確定未知數并用x表示;
找出題中的數量之間的相等關系;
列方程,解方程;
檢查或驗算,寫出答案。
3.列方程解應用題的方法
*綜合法:先把應用題中已知數(量)和所設未知數(量)列成有關的代數式,
再找出它們之間的等量關系,進而列出方程。這是從部分到整體的一種思維
過程,其思考方向是從已知到未知。
*分析法:先找出等量關系,再根據具體建立等量關系的需要,把應用題中已
知數(量)和所設的未知數(量)列成有關的代數式進而列出方程。這是從
整體到部分的一種思維過程,其思考方向是從未知到已知。
4列方程解應用題的范圍
小學范圍內常用方程解的應用題:
a一般應用題;
b和倍、差倍問題;
c幾何形體的周長、面積、體積計算;
d分數、百分數應用題;
e比和比例應用題。
五.比和比例
1.比的意義和性質
(1).比的意義
兩個數相除又叫做兩個數的比。
“:”是比號,讀作“比”。比號前面的數叫做比的前項,比號后面的數叫
做比的后項。比的前項除以后項所得的商,叫做比值。
同除法比較,比的前項相當于被除數,后項相當于除數,比值相當于商。
比值通常用分數表示,也可以用小數表示,有時也可能是整數。
比的后項不能是零。
根據分數與除法的關系,可知比的前項相當于分子,后項相當于分母,比值
相當于分數值。
(2)比的性質
比的前項和后項同時乘上或者除以相同的數(0除外),比值不變,這叫做比
的基本性質。
(3)求比值和化簡比
求比值的方法:用比的前項除以后項,它的結果是一個數值可以是整數,也
可以是小數或分數。
根據比的基本性質可以把比化成最簡單的整數比。它的結果必須是一個最簡
比,即前、后項是互質的數。
(4)比例尺
圖上距離:實際距離=比例尺
要求會求比例尺;已知圖上距離和比例尺求實際距離;已知實際距離和比例
尺求圖上距離。
線段比例尺:在圖上附有一條注有數目的線段,用來表示和地面上相對應的
實際距離。
(5)按比例分配
在農業生產和日常生活中,常常需要把一個數量按照一定的比來進行分配。
這種分配的方法通常叫做按比例分配。
方法:首先求出各部分占總量的兒分之兒,然后求出總數的兒分之兒是多少。
2.比例的意義和性質
(1).比例的意義
表示兩個比相等的式子叫做比例。
組成比例的四個數,叫做比例的項。
兩端的兩項叫做外項,中間的兩項叫做內項。
(2)比例的性質
在比例里,兩個外項的積等于兩個兩個內向的積。這叫做比例的基本性質。
(3)解比例
根據比例的基本性質,如果已知比例中的任何三項,就可以求出這個數比例
中的另外一個未知項。求比例中的未知項,叫做解比例。
3.正比例和反比例
(1).成正比例的量
兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對
應的兩個數的比值(也就是商)一定,這兩種量就叫做成正比例的量,他們
的關系叫做正比例關系。
用字母表示y/x=k(一定)
(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DB14-T 1586-2025 SH系矮化中間砧蘋果園滴灌技術規程
- 礦石石頭裝車合同安全運輸與責任保險協議
- 土地抵押貸款及財產分配協議
- 創新型個人創業項目投資借款合同
- 供應鏈金融財務顧問與風險管理協議
- 2025年心理測量與評估考試題及答案
- 標樣本橋梁技術范本
- 健康餐廳委托經營及菜品創新合作協議范本
- 拆遷工程臨時用電設施拆除與施工合同
- 義工活動活動方案
- 眼耳鼻喉口腔科說課PPT
- 過濾器設計計算書
- 新一代寄遞平臺投遞PC(課堂PPT)
- SH3508-2011附錄A填寫示例
- 機械設計外文文獻翻譯、中英文翻譯、外文翻譯
- 大體積混凝土澆筑與振搗方案
- 中山大學南方學院互聯網 大學生創新創業大賽評分表
- 保險精算業中英翻譯術語及表達式詞庫
- 一次函數應用題
- 英語課題評審書
- 江蘇大學自主招生考試綜合素質測試面試試題答題技巧匯總
評論
0/150
提交評論