




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
Team#15263 Page
PAGE
13
of
NUMPAGES
23
MACROBUTTONMTEditEquationSection2EquationChapter6Section1
SEQMTEqn\r\h
SEQMTSec\r1\h
SEQMTChap\r6\h
LeavesClassificationandLeafMassEstimation
Summary
Forthefirstproblem,weestablishourneuralnetworkmodeltoclassifyleavesoftreesbytakingeightcharacteristicsofleafintoconsideration.Theeightcharacteristicsconsistofsawtoothnumber,petiolelength,bladelength,bladewidth,bladethickness,leafareaandcirculardegree.Ourresultsaresummarizedinaconclusionthatweclassifyleavesintofourteentypesincludinglinear,lanceolate,oblanceolate,spatulate,ovat,obovate,elliptic,oblong,deltoid,reniform,orbicular,peltate,perfoliateandconnate.Ourneuralnetworkimplementtheclassificationtaskreliablyandcorrectly.
Forthesecondproblem,wesetupourAHPmodeltofigureoutthereasonswhyleaveshavethevariousshapesandcometoaconclusionthatgene,auxin,climateanddiseasearethemainreasonswhichleadtovariousshapes.
Forthethirdproblem,wediscussthisissuefromtheperspectiveofgrowthevolutionaryandhormones,buildcellsmechanicmodeltosolvethisproblemandsumuptheconclusionthattheshapesareinclinedtominimizeoverlappingindividualshadowsthatarecastsoastomaximizeexposure.Theshapeiseffectedbythedistributionofleaveswithinthevolumeofthetreeanditsbranches.
Forthefourthproblem,weusestatisticalanalysisknowledgetoanalysethedataamongtreeprofiles,branchingstructureandleafshapes,aftermathematicallyanalyzing,finallyfindthatleavesshapeshaveadirectrelationwiththetreeprofileandbranchingstructure,
Forthefifthproblem,weformulateourvolumetricmethodforleafmassestimationandlinearregressionmodelforseekingandcomparingthecorrelationbetweentheleafmassandtreeheight,treemassandcrownvolume.Weobtainthatcrownvolumehasthehighestcorrelationwithtreeleafmass.Sowemakeuseofthecrownvolumetoestimatetheleafmass.
Atlast,wewriteonepagesummarysheetofourkeyfindings.
Keywords:neuralnetwork,leafclassification,leafmassestimation,AHP,leafshape,volumetricmethod,linearregressionmodel
Contents
Contents
0
Ⅰ.Introduction
1
Ⅱ.SomeDefinitions
1
Ⅲ.GeneralAssumptions
1
Ⅳ.Symbols
2
Ⅴ.Problemanalysis
2
Ⅵ.Models
3
6.1Neuralnetworkmodeltoclassifytreeleaves
3
6.1.1Neuromime
3
6.1.2Multi-layerperceptronnetwork
4
6.1.3Back-propogation
5
6.1.4NN’susetoclassifyleaves
6
6.2Studyingthereasonsofthevariousshapesthatleaveshave.
6
6.2.1SetupaAHPmodeltovaluethesebasefactors
6
6.2.2Pairedcomparisonmatrixstructure
7
6.2.3Calculationoftheweightvectorandtheconsistencytest
8
6.3Optimizeleavesshapeformaximizeexposure
9
6.3.1Explainandanswerrequirment
9
6.3.2SetupaElasticmechanicsmodel
9
6.4Treeprofileandbranchingstructure’sinfluenceonleafshape.
10
6.4.1Analysisabouttheimpactoftreeprofiletoleafshape
10
6.4.2Electrictreebranchangle’simpactanalysis
13
6.5Estimationoftheleafmass
14
6.5.1Buildupavolumetricmodel
14
6.5.2Thecorrelationofleafmassvs.meancrownradius’scubic
15
6.5.3Thecorrelationbetweentheleafmassandtheheightofthetree
16
6.5.4Thedryleafmassvs.thevolumeofthetree
17
6.5.5Therelationshipbetweentheleafmassandmeancrownradius
18
Ⅶ.Conclusions
19
Ⅷ.StrengthsandWeaknessoftheModel
19
Ⅸ.FutureWork
20
Ⅹ.References
20
KeyFindings
21
Ⅰ.Introduction
Asisknowntoall,therearenottwoleavesexactlyalike.Plantleaveshavediverseandelaborateshapesandvenationpatterns.Thebeautyofthemhasattractedcuriosityofmanypeopleinvolvingbiologists,physicists,mathematician,artists,computerscientists,etc.foralongtime.Theleafstudyofforestsandofindividualtreeisimportanttounderstandresourceallocationoftrees,atmosphere—biosphereexchangeprocesses,andtheenergybudget,itwouldalsobevaluableforindividualtreegrowth.
Theaimofthisarticleistodevelopmodelsforleafshapesclassificationandtofigureoutthemainfactorswhichleadtothevariousleafshapes.Atthesametime,wefindouttheinteractionbetweentree(It’sprofile/branchingstructure)andtreeleaf.Thoughtherearesomanymethodstoestimatetheleafmass.Wesolvethisproblemthroughacorrelationbetweentheleafmassandthesizecharacteristicsofthetree.
Ⅱ.SomeDefinitions
Leaf
Toaplant,leavesarefoodproducingorgans.Leaves"absorb"someoftheenergyinthesunlightthatstrikestheirsurfacesandalsotakeincarbondioxidefromthesurroundingairinordertorunthemetabolicprocessofphotosynthesis.
Phototropism[1]
Phototropismisdirectionalgrowthinwhichthedirectionofgrowthisdeterminedbythedirectionofthelightsource.Itcausestheplanttohaveelongatedcellsonthefarthestsidefromthelight.Phototropismisoneofthemanyplanttropismsormovementswhichrespondtoexternalstimuli.
PolarAuxinTransport(PAT)[2]
PATistheregulatedtransportoftheplanthormoneauxininplants.Itisanactiveprocess,thehormoneistransportedincell-to-cellmannerandoneofthemainfeaturesofthetransportisitsdirectionality(polarity).Thepolarauxintransporthascoordinativefunctioninplantdevelopment,thefollowingspatialauxindistributionunderpinsmostofplantgrowthresponsestoitsenvironmentandplantgrowthanddevelopmentalchangesingeneral.
ApicalDominance[3]
Itisthephenomenonwherebythemaincentralstemoftheplantisdominantoverothersidestems;onabranchthemainstemofthebranchisfurtherdominantoveritsownsidebranch.
Ⅲ.GeneralAssumptions
Theinfluenceofvariationinthicknessofleavescanbeneglect.
Wedonottaketheinfluenceoftheartificialfactorintoconsideration.
Regardlessoftheinfluenceofdeformationofcell.
Weregardthecrownofthetreeasahalfsphere.
Theleavesinthecrownareeventlydistributed.
Neglectgenicmutationinfluence.
Ⅳ.Symbols
symbol
Instructions
climate,disease,auxin,gene
thelargesteigenvalue
eigenvectors
consistencyratio
consistencyindex
thepointaleaflocateoncoordinatesystem
acoefficientrelatedonleafshape
Treebranchangle
theleafmass
(Mark:Othersymbolswillbegiveninthespecificmodel)
Ⅴ.Problemanalysis
Thefirstquestionrequiresustobuildamathematicalmodeltodescribeandclassifyleaves.Wethinkthatthestandardofclassificationistheshapeofleaf.Soweneedtostudythecharacteristicsofleafandtoensurethathowtodefineatypeofleafbythecombinationofsomecharacteristics.Inaddition,weshouldfigureouthowandhowmuchthesecharacteristicshaveinfluenceondefiningatypeofleaf.Sowetakeeightcharacteristicsintoconsiderationincludingmastersawtoothnumber,petiolelength,bladelength,bladewidth,bladethickness,leafareaandcirculardegree.Wefindthatneuralnetworksholdthecapacitytoprocesshugedataandcanbeusedtodescribecognition,classificationandsomeotherintelligentbehaviors.Sowemakeadecisiontousetheneuralnetworkstomakeaclassificationoftreeleaves.
Thesecondquestionrequiresustofigureoutthereasonsthatwhytheleaveshavevariousshapes.Itiseasytoknowthattheshapeofaleafmainlydecidedbythegeneofthetree.Butweknowthattheleavesofthesametreealwayshavedifferentshapeswiththesamegenes.Sowecandrawaconclusionthattheshapeofleafisnotonlydecidedbythegeneofthetreeaswellasinfluencedbyenvironmentalfactors.WechoosethesefactorstoanalyzethespecificinfluenceontheformingprocessoftheshapeofleafbyusinganAHPmodel.
Thethirdquestionwantsustogetknowofthatwhethertheleafhavea“hobby”tokeepastatetomaximizeexposureandminimizeoverlappingindividualshadowsthatarecast.Inaddition,iftheshapeofleafiseffectedbythedistributionofbranchesandthevolumeofthetree.Soweshouldmakeasurveytomakeitclearthattherelationshipbetweencrown’ssurfaceareaandtheleafareaofatotaltree.Thenweneedtostudythesunshine’sinfluenceontheformationofleaf.
Wethinkthefourthquestion’saimistoresearchthatwhetherthetreeprofileorthebranchingstructurehasinfluenceonleafshape.Inthisquestionwethinkthatthe“profile”ofatreeisthecrown,andthereisapossibilitythatdifferentcrownhasdifferentinfluenceontheleafshape.
Thelastquestionisrequireustofindacorrelationbetweentheleafmassandthesizecharacteristicsofthetree(height,mass,volumedefinedbytheprofile),andthenmakeuseofoneormoreofthischaracteristicstoestimatetheleafmassofatree.
Ⅵ.Models
6.1Neuralnetworkmodeltoclassifytreeleaves
Ourdutyistofindanapproachtohowtoclassifyleaves.WeuseNeuralnetworkmodeltoclassifytreeleaves
Asforclassification,Neuralnetworkmodelisgreatlyabletogetafairlyidealconclusion.Todistinguishoneleafshapepatternsfromeachother,Neuralnetworkmodelisoptimal.Throughastudysampleprogressonandoff,inwhichweadjustaccordingly.Eventuallyourmodelisso“smart”astoidentifydifferentleafshapes.Aleafsamplecharacterize8featuresasmentioned-above.Anditisnecessaryforustoexplainthemodelandweseparateasthreepartstoexpatiate.
6.1.1Neuromime
Thefollowgraphisabasepartof.
Figure6.1-1:neuromime
Solutiontoinputsignal:
MACROBUTTONMTPlaceRef
SEQMTEqn\h
(
SEQMTEqn\c\*Arabic
1
)
Whereistheweight,istheinputnodevalue:
MACROBUTTONMTPlaceRef
SEQMTEqn\h
(
SEQMTEqn\c\*Arabic
2
)
isThresholdvalue:
MACROBUTTONMTPlaceRef
SEQMTEqn\h
(
SEQMTEqn\c\*Arabic
3
)
isactivationfunction,istheoutputofaneuroninthesuccessivelayer.Theactivationfunctionisanonlinearfunctionandisgivenby:
MACROBUTTONMTPlaceRef
SEQMTEqn\h
(
SEQMTEqn\c\*Arabic
4
)
6.1.2Multi-layerperceptronnetwork
Thisisthemainstructureof.
Figure6.1-2:Multi-layerperceptronnetwork
ThestructureoftheArtificialNeuralNetworkANNinthisworkcontainsthreelayers:input,hiddenandoutputlayersasshowninfigure6.1-2.Weuseinputlayertoinputthecharacteristicsoftheleaves.Eachlayercontainsandnodes.Thenodeisalsocalledneuronorunit.ThisstudysummarizedeightfactorsforANNinput,thatistosay.Theeightinputunitsaresawtoothnumber,petiolelength,bladelength,bladewidth,bladethickness,leafareaandcirculardegree.
Forthehiddenlayerwemake.Thefunctionoftheoutputlayeristooutputclassifiedinformationcorrespondingtotheinputdata.Thevalueofrangesfromthetypesofleavesweneedtoidentify.Theisdenotedasnumericalweightsbetweeninputandhiddenlayers,betweenhiddenandoutputlayersasalsoshowninfigure6.1-2.
Infact,asforasampleof“”,theinputofthehiddenlayeris:
MACROBUTTONMTPlaceRef
SEQMTEqn\h
(
SEQMTEqn\c\*Arabic
5
)
Thecorrespondingoutputstate:
MACROBUTTONMTPlaceRef
SEQMTEqn\h
(
SEQMTEqn\c\*Arabic
6
)
Therefore,thesuperimposedsignalreceivedis:
MACROBUTTONMTPlaceRef
SEQMTEqn\h
(
SEQMTEqn\c\*Arabic
7
)
Thefinaloutputofthenetworkis:
MACROBUTTONMTPlaceRef
SEQMTEqn\h
(
SEQMTEqn\c\*Arabic
8
)
Wehopethefinaloutputisidealization.Forexample.Forexample,afterlearningmapleleaf‘sfeatures,iftheoutputisliketheformof,wecalledtheoutputlikethistheidealoutput,theidealoutputisnotedfor.
Figure6.1-2:Differenttypesofshapes
Linear.Lanceolate.Oblanceolate.Spatulate.Ovate.Obovate.Elliptic.Oblong.Deltoid.Reniform.Orbicular.Peltate.PerfoliateConnate.
6.1.3Back-propogation
Inordertominimizingthedifferencesbetweenactualoutputanddesiredoutput,wechooseBPalgorithm,whichisonepartof.
Assetforth,theerrorobtainedwhentrainingapair(pattern)consistingofbothinputandoutputgiventotheinputlayerofthenetworkisgivenby:
MACROBUTTONMTPlaceRef
SEQMTEqn\h
(
SEQMTEqn\c\*Arabic
9
)
Whereisthethcomponentofthedesiredoutputvectorandisthecalculatedoutputofthneuronintheoutputlayer.
Combine
GOTOBUTTONZEqnNum106698
REFZEqnNum106698\*Charformat\!
(8)
with
GOTOBUTTONZEqnNum233133
REFZEqnNum233133\*Charformat\!
(9)
,wecandraw:
MACROBUTTONMTPlaceRef
SEQMTEqn\h
(
SEQMTEqn\c\*Arabic
10
)
Thisisanonlinearfunctionwhichiscontinuouslydifferentiable.Inordertoobtaintheminimumpointandthevalue,themostconvenientistousethesteepestdescentmethodtogettheminimalvalueof,when,wegettheidealvalueofthevariablesand.
6.1.4NN’susetoclassifyleaves
Through,singleseveralmodelsleavesandgroupingandnumberofthem.Then,learningeachgroup,isacquaintanceeachmodels.Ifwanttoclassifyoneleaf.Weareabletolettosolvethisproblem,eventually,weclassifytheleafaslike-model.
6.2Studyingthereasonsofthevariousshapesthatleaveshave.
Leaveshaveavarietyofforms.Therearelotsofreasonsaccountforleavesvaryinginshapesandsize,listedasfollows:Overall,thereasonscanbedividedintoexternalandinternalfactors.
Externalfactors:
Seasonsandclimate(includingwind,sunlight,moisture,temperature);
Plantdiseasesandinsectpests;
Artificialfactor;
Internalfactors:
Deformationofcells,moisturelossofMesophyllcellsmaycausevolumedecrease;
Phytohormoneauxin;
Differencegene.
webelievethatthereexits4basefactorsthatleadtothevarietyofleavesshape.Theyareclimate,disease,phytohormoneandgene.Andweendeavorfindoutreasonstothem.
climate:thechangeofsunshine,water,temperature,humiditywhichaltersleavesshape.
disease:througheffectingtheactivityofanenzyme,sothatinfluenceleavesshape.
Phytohormoneauxin:haveinfluenceongeneexpression
gene:throughDNAdeterminethegeneralleafshape
6.2.1SetupaAHPmodeltovaluethesebasefactors
Wesolvethisproblembasedonthereasonslistedabove.Afteranalyzingallofthem,weholdanopinionthathumanattemptisusuallyfairlyhaphazard.Sinceweviewalltheleaves’livingenvironmentisstable,wedon’ttakeartificialfactorintoconsideration.Wedefinite"totalimpact"as"targetlayer”,andclimate,disease,phytohormone,geneasthe"criterionlayer".Asshowninthefollowingfigure6.2-1:
Totalimpact
Climate
Disease
Auxin
Gene
Figure6.2-1:reasonsforthevariousshapes
6.2.2Pairedcomparisonmatrixstructure
Toanalyzetheeffectsofelectricvehicles’widespreaduseontheenvironment,social,economicandhealth,weeachtaketwofactors:
MACROBUTTONMTPlaceRef
SEQMTEqn\h
(
SEQMTEqn\c\*Arabic
11
)
MACROBUTTONMTPlaceRef
SEQMTEqn\h
(
SEQMTEqn\c\*Arabic
12
)
Theyareusedtorepresentenvironmental,economic,socialandhealthbyturns.Allresultsareavailablethefollowingpairwisecomparisonmatrix:
MACROBUTTONMTPlaceRef
SEQMTEqn\h
(
SEQMTEqn\c\*Arabic
13
)
MACROBUTTONMTPlaceRef
SEQMTEqn\h
(
SEQMTEqn\c\*Arabic
14
)
Obviously:
MACROBUTTONMTPlaceRef
SEQMTEqn\h
(
SEQMTEqn\c\*Arabic
15
)
Theresultweusedpairedcomparisonofthepairedcomparisonmatrixis:
Whenwetakecomparisonofthemqualitatively,therearefiveclearhierarchyinpeople'smindsusually,whichisexpressedas:
Table6.1-1:themeaningoftheMeasure1-9
Meaning
1
andhavethesameinfluence
3
hasaslightlystrongerinfluencethan
5
hasstrongerinfluencethan
7
hassignificantlystrongerinfluencethan
9
hasAbsolutelystrongerinfluencethan
2,4,6,8
heratiooftheinfluenceof
to
locatesbetweenthetwonearclasses
1,1/2,,1/9
heratioof
is
the
reciprocal
of
6.2.3Calculationoftheweightvectorandtheconsistencytest
UseMATLABsoftwaretocalculatethepairwisecomparisonmatrixforthelargesteigenvalueandthemaximumeigenvectorthattheeigenvaluecorresponding.Thenwewillnormalizationtheabove-mentionedvector,thenormalizedresultsastheweightvectorofthecomparisonfactor.Followingtheresults:
Usually,thepairscomparisonmatrixisnotthesamearray.Butifitsfeaturevectorsofeigenvaluecorrespondingcanbeusedasaweightvectoroffactorstobecompared,theextentofitsinconsistencyshouldbewithintherangeof:
MACROBUTTONMTPlaceRef
SEQMTEqn\h
(
SEQMTEqn\c\*Arabic
16
)
Selecting0.1inthistypehasacertainsubjectivewishes.
MACROBUTTONMTPlaceRef
SEQMTEqn\h
(
SEQMTEqn\c\*Arabic
17
)
representsconsistencyindex,representsitsRandomConsistencyIndex,representsitsconsistencyratio.
Table6.1-2:
1
2
3
4
5
6
7
8
9
10
0
0
0.58
0.90
1.12
1.24
1.32
1.41
1.45
1.49
Fromtheequationabovewecandraw:
Fromthetableabove,wecanget:
Thecorrespondingis
Thismeansourmodelhaspassedtheconsistencytest,canbeusedasaweightvector.
Fromtheanalysisweelicitaconclusionthatgeneismaximallyimpacted,andthengene,phytohormone,climate,deaseisfollowing.
6.3Optimizeleavesshapeformaximizeexposure
6.3.1Explainandanswerrequirment
Fromthemodel2’sconclusionwegetabove,weacquaintthatsunlightisacriticalfactorforplants.Plantsarephotoautotrophs,obtaintheirownenergythroughphotosynthesisandproduceoxygeninthemeantime.Fromevolutionaryconsiderations,itseemsthattheleavesalwaysinafavorabledirection,sothattheycanmaximizetheirexposuretothesun.Asisconsideredabove,sunlightchangesthebladeshapethroughinfluencingthedistributionofgrowthhormones.Thuswediscussthisissuefromtheperspectiveofgrowthhormones.Firstofall,weneedtoknowmorespecificallyhowgrowthhormonesaffectleaves.Growthhormonesisadirectionaltransport,butsometimesittransportstothebacklight.Byinhibitingthegrowthoftheshadedsidetoeffectsthephototropismmovementofplants.Duetothisphenomenonleaves“dotheirbestefforts”makethemselvesexposed.Inotherwords,Itistominimizemutualshadingimpact.Wetrytobuildcellsmechanicmodeltosolvethisproblem,meanwhile,explainreasonsforthisphenomenon.
Conclusion:plantsalways“optimize”theirleavesshapeformaximizeexposure.Putanotherway,theyare“minimize”overlappingindividualshadowsthatarecast.Theresultcanprimelyexplainthereasons.
6.3.2SetupaElasticmechanicsmodel
WechooseElasticmechanicsmodeltosimplifyandimitatePhysicalforceofmesophyllcells.Weassumethateachcellofleafissubjecttotwoforces,oneistheexpansiveforcegeneratedbycytoplasmofcellsinside;anotheroneisexternaltensiongeneratedbycellwall,asshowninfigure6.3-1.
Figure6.3-1:Elasticrigidmodel
Inordertodescribethetwophysicalforcesleafcellssufferedmoreaccurately.Wecanbuildcontractivespringtopresenttheexpansiveforceofthecell,similarly,tensionspringscanbeusedtoexpressthetensionbetweenthecells.Therefore,onlythesetwoforcesbalanceeachother,acellcanstayinstablegeometrywhichcanusethefollowingequationtoexpress.
Whereiscells’originallengthinthesaturatedstate,presentsthelengthafterpowerexpansionandisexternalimpulse,representsspringstiffness.
Thismodeldescribebecauseofthephotosynthesis,cellsaffectedbygrowthhormones,leadingtoaresultthattheshapes“minimize”overlappingindividualshadowsthatarecast,soastomaximizeexposure.
Thus,aleaftendstoincreasethesurfaceareaaslargeaspossibletomaximizemetaboliccapacity,becausemetabolismproducestheenergyandmaterialsrequiredtosustainandreproducelife.
6.4Treeprofileandbranchingstructure’sinfluenceonleafshape.
Westrivetoexploretherelationshipsbetweendistributionofleaveswithinthe“volume”ofthetreeandleavesshape.
6.4.1Analysisabouttheimpactoftreeprofiletoleafshape
Weanalyzethisproblembasedonbiology.Wetaketheinfluenceofwindintoconsiderationinadditiontothosefourfactorsabove.Especiallyforthosehugetrees,spatialdistributionwouldinfluencetheleafshape,namelytheanswertothisquestionispositive.Becauseofthecomplexityofgeneticmutation,wesolvethisproblembasedonenvironmentandauxinwithoutregardtogenemutation.Weusetheimpactofwindinsteadofenvironmentalinfluence.
Auxinsarenotsynthesizedinallcells(evenifcellsretainthepotentialabilitytodoso,onlyunderspecificconditionswillauxinsynthesisbeactivatedinthem).Forthatpurpose,auxinshavetobetranslocatedtowardthosesiteswheretheyareneeded.Translocationisdriventhroughouttheplantbody,primarilyfrompeaksofshootstopeaksofroots.Polarauxintransportwouldleadtophyllotaxisdisorderandleavesofdifferentsize.(fromdevelopmentmechanismoftheleaves).Astheresult,someleaveswellbeenrichedresponsetounevendistributionoftheauxins.[8]Leavesawayfromsunmayhavebiggerleafareatogetmoresunlight.Duetotheinfluenceofwind,thedownwindleavesweresignificantlybetterthanthoseinupwinddirection.
Conclusion:leavesshapeareinfluencedbyleaves’three-dimensionaleffectatthetreeanditsbranches.
Setupmathematicfunctions
Spaceanalysisonatreeasisshowninfigure.Nowwechoosealeaflocatedintostudyits’shape.Determineleafshapethroughintegratedimpactsofauxin,sunlightandwind.Weprovideacoefficienttoindicatetheleafshape:
Figure6.4-1:Treespacecoordinatesystem
Weprovideacoefficienttoindicatetheleafshape:
Wheresisleafarea,isthelengthofleaf,isthewidthofleaf.
Findoutspacefunctionexpressionsaboutthethreefactors:
WhereNisAuxinconcentrations,isLightflux,isleafsurface,iswindforce,iswindspeedandisaconstantcoefficient,whichusedtoquantifytheinfluenceofwind
Thenwecanget:
Auxinconcentrations:
Lightflux:
Weintroduce
MACROBUTTONMTPlaceRef
SEQMTEqn\h
(
SEQMTEqn\c\*Arabic
18
)
Thenwecanget:
MACROBUTTONMTPlaceRef
SEQMTEqn\h
(
SEQMTEqn\c\*Arabic
19
)
MACROBUTTONMTPlaceRef
SEQMTEqn\h
(
SEQMTEqn\c\*Arabic
20
)
whereisweedspeed,isLuminousflux,whichusedtoquantifytheinfluenceofwind,isthecorresponingweightcoefficient.
Whethertreebranchinginfluenceleavesshape.
Firstly,webelievethatthemainfeatureoftreeprofilewouldbetreeshape.duetothesubtledifferencesoflight,temperature,humidityandvelocityofwindamongdifferenttreeshapes,sothatleafshapesarevarious.Inaword,leafshapesarerelativetotreeshapes.Thereisagraphwecanoffer.
Table6.4-1:someexplanation
:
crowntypeparameter
leafareaindex
meantiltangle
scatteredlightsitefigure
directlightsitefigure
generallightsitefigure
Table6.4-2:Thecanopycharacteristicsindexesunderdifferenttreeshape
Treeshape
LAI
ELADP
MLA
ISF
DSF
CSF
Opencebtershape
Spindleshape
Disperselaminationshape
Note:Differentlettersincolumnsofthetableshowthesignificantdifferences()
Treeswithopencebtershapehavetheadvantagesofreceivingmoresunlight.It’slowerthantheothertwo,lowerthanspindleshape,lowerthandisperselaminationshape.
haslargerlightsitecoefficientthantheothertwoshapes.Its’,andare、、largerthanandis、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 繡球北方越冬管理辦法
- 福建企業(yè)宿舍管理辦法
- 規(guī)劃審批資金管理辦法
- 培訓心得課件下載
- 福建泉州市中考數學試卷
- 產后修復培訓課件
- 肖邦英語課件
- 甘肅2024年數學試卷
- 關老師批數學試卷
- 第二實驗中學數學試卷
- JGJ59-2011建筑施工安全檢查評分表-(完整版)
- 黔東南高新產業(yè)園區(qū)新建防潮磷石膏砌塊、磷石膏砂漿、磷石膏復合保溫板建材生產線項目環(huán)評報告
- 無線網網絡安全應急預案
- 國開大學2023年01月22503《學前兒童健康教育活動指導》期末考試答案
- 建筑工地九牌一圖內容僅供參考模板
- 江西中醫(yī)藥大學專職輔導員招聘考試真題2022
- 學生個人檔案表
- 成都實驗外國語(西區(qū))初一語文分班考試檢測卷(含答案)
- 養(yǎng)老護理員中級考試試題含答案
- 羽毛球社團活動教案記錄表
- 直播間租賃協議
評論
0/150
提交評論