2022-2023學年湖北省孝感市八校聯誼中考聯考數學試卷含解析_第1頁
2022-2023學年湖北省孝感市八校聯誼中考聯考數學試卷含解析_第2頁
2022-2023學年湖北省孝感市八校聯誼中考聯考數學試卷含解析_第3頁
2022-2023學年湖北省孝感市八校聯誼中考聯考數學試卷含解析_第4頁
2022-2023學年湖北省孝感市八校聯誼中考聯考數學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.下列實數中,有理數是()A. B. C.π D.2.如圖,在4×4正方形網格中,黑色部分的圖形構成一個軸對稱圖形,現在任意選取一個白色的小正方形并涂黑,使黑色部分的圖形仍然構成一個軸對稱圖形的概率是()A. B. C. D.3.的倒數是()A. B.3 C. D.4.三角形兩邊的長是3和4,第三邊的長是方程x2-12x+35=0的根,則該三角形的周長為()A.14 B.12 C.12或14 D.以上都不對5.若分式的值為零,則x的值是()A.1 B. C. D.26.如圖,為等邊三角形,要在外部取一點,使得和全等,下面是兩名同學做法:()甲:①作的角平分線;②以為圓心,長為半徑畫弧,交于點,點即為所求;乙:①過點作平行于的直線;②過點作平行于的直線,交于點,點即為所求.A.兩人都正確 B.兩人都錯誤 C.甲正確,乙錯誤 D.甲錯誤,乙正確7.□ABCD中,E、F是對角線BD上不同的兩點,下列條件中,不能得出四邊形AECF一定為平行四邊形的是()A.BE=DF B.AE=CF C.AF//CE D.∠BAE=∠DCF8.下列實數0,,,π,其中,無理數共有()A.1個 B.2個 C.3個 D.4個9.一組數據:6,3,4,5,7的平均數和中位數分別是()A.5,5 B.5,6 C.6,5 D.6,610.若關于x的分式方程的解為非負數,則a的取值范圍是()A.a≥1 B.a>1 C.a≥1且a≠4 D.a>1且a≠4二、填空題(本大題共6個小題,每小題3分,共18分)11.分解因式=________,=__________.12.如圖,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,點M、N分別在線段AC、AB上,將△ANM沿直線MN折疊,使點A的對應點D恰好落在線段BC上,當△DCM為直角三角形時,折痕MN的長為__.13.圖1是我國古代建筑中的一種窗格,其中冰裂紋圖案象征著堅冰出現裂紋并開始消溶,形狀無一定規則,代表一種自然和諧美.圖2是從圖1冰裂紋窗格圖案中提取的由五條線段組成的圖形,則∠1+∠2+∠3+∠4+∠5=度.14.因式分解:a2b-4ab+4b=______.15.分解因式2x2﹣4x+2的最終結果是_____.16.關于的一元二次方程有兩個相等的實數根,則的值等于_____.三、解答題(共8題,共72分)17.(8分)某商場計劃從廠家購進甲、乙、丙三種型號的電冰箱80臺,其中甲種電冰箱的臺數是乙種電冰箱臺數的2倍.具體情況如下表:甲種乙種丙種進價(元/臺)120016002000售價(元/臺)142018602280經預算,商場最多支出132000元用于購買這批電冰箱.(1)商場至少購進乙種電冰箱多少臺?(2)商場要求甲種電冰箱的臺數不超過丙種電冰箱的臺數.為獲得最大利潤,應分別購進甲、乙、丙電冰箱多少臺?獲得的最大利潤是多少?18.(8分)菏澤市牡丹區中學生運動會即將舉行,各個學校都在積極地做準備,某校為獎勵在運動會上取得好成績的學生,計劃購買甲、乙兩種獎品共100件,已知甲種獎品的單價是30元,乙種獎品的單價是20元.(1)若購買這批獎品共用2800元,求甲、乙兩種獎品各購買了多少件?(2)若購買這批獎品的總費用不超過2900元,則最多購買甲種獎品多少件?19.(8分)某商場銷售一批名牌襯衫,平均每天可以銷售20件,每件盈利40元,為了擴大銷售,增加利潤,盡量減少庫存,商場決定采取適當的降價措施,經調查發現,如果每件襯衫降價1元,商場平均每天多售出2件,若商場平均每天要盈利1200元,每件襯衫應降價多少元?20.(8分)截至2018年5月4日,中歐班列(鄭州)去回程開行共計1191班,我省與歐洲各國經貿往來日益頻繁,某歐洲客商準備在河南采購一批特色商品,經調查,用1600元采購A型商品的件數是用1000元采購B型商品的件數的2倍,一件A型商品的進價比一件B型商品的進價少20元,已知A型商品的售價為160元,B型商品的售價為240元,已知該客商購進甲乙兩種商品共200件,設其中甲種商品購進x件,該客商售完這200件商品的總利潤為y元(1)求A、B型商品的進價;(2)該客商計劃最多投入18000元用于購買這兩種商品,則至少要購進多少件甲商品?若售完這些商品,則商場可獲得的最大利潤是多少元?(3)在(2)的基礎上,實際進貨時,生產廠家對甲種商品的出廠價下調a元(50<a<70)出售,且限定商場最多購進120件,若客商保持同種商品的售價不變,請你根據以上信息及(2)中的條件,設計出使該客商獲得最大利潤的進貨方案.21.(8分)如圖,矩形擺放在平面直角坐標系中,點在軸上,點在軸上,.(1)求直線的表達式;(2)若直線與矩形有公共點,求的取值范圍;(3)直線與矩形沒有公共點,直接寫出的取值范圍.22.(10分)先化簡,再求值:,其中x=,y=.23.(12分)某公司生產的某種產品每件成本為40元,經市場調查整理出如下信息:①該產品90天售量(n件)與時間(第x天)滿足一次函數關系,部分數據如下表:時間(第x天)12310…日銷售量(n件)198196194?…②該產品90天內每天的銷售價格與時間(第x天)的關系如下表:時間(第x天)1≤x<5050≤x≤90銷售價格(元/件)x+60100(1)求出第10天日銷售量;(2)設銷售該產品每天利潤為y元,請寫出y關于x的函數表達式,并求出在90天內該產品的銷售利潤最大?最大利潤是多少?(提示:每天銷售利潤=日銷售量×(每件銷售價格-每件成本))(3)在該產品銷售的過程中,共有多少天銷售利潤不低于5400元,請直接寫出結果.24.某社區活動中心為鼓勵居民加強體育鍛煉,準備購買10副某種品牌的羽毛球拍,每副球拍配x(x≥2)個羽毛球,供社區居民免費借用.該社區附近A、B兩家超市都有這種品牌的羽毛球拍和羽毛球出售,且每副球拍的標價均為30元,每個羽毛球的標價為3元,目前兩家超市同時在做促銷活動:A超市:所有商品均打九折(按標價的90%)銷售;B超市:買一副羽毛球拍送2個羽毛球.設在A超市購買羽毛球拍和羽毛球的費用為yA(元),在B超市購買羽毛球拍和羽毛球的費用為yB(元).請解答下列問題:分別寫出yA、yB與x之間的關系式;若該活動中心只在一家超市購買,你認為在哪家超市購買更劃算?若每副球拍配15個羽毛球,請你幫助該活動中心設計出最省錢的購買方案.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

實數分為有理數,無理數,有理數有分數、整數,無理數有根式下不能開方的,等,很容易選擇.【詳解】A、二次根2不能正好開方,即為無理數,故本選項錯誤,

B、無限循環小數為有理數,符合;

C、為無理數,故本選項錯誤;

D、不能正好開方,即為無理數,故本選項錯誤;故選B.【點睛】本題考查的知識點是實數范圍內的有理數的判斷,解題關鍵是從實際出發有理數有分數,自然數等,無理數有、根式下開不盡的從而得到了答案.2、B【解析】解:∵根據軸對稱圖形的概念,軸對稱圖形兩部分沿對稱軸折疊后可重合,白色的小正方形有13個,而能構成一個軸對稱圖形的有4個情況,∴使圖中黑色部分的圖形仍然構成一個軸對稱圖形的概率是:.故選B.3、A【解析】

解:的倒數是.故選A.【點睛】本題考查倒數,掌握概念正確計算是解題關鍵.4、B【解析】

解方程得:x=5或x=1.當x=1時,3+4=1,不能組成三角形;當x=5時,3+4>5,三邊能夠組成三角形.∴該三角形的周長為3+4+5=12,故選B.5、A【解析】試題解析:∵分式的值為零,∴|x|﹣1=0,x+1≠0,解得:x=1.故選A.6、A【解析】

根據題意先畫出相應的圖形,然后進行推理論證即可得出結論.【詳解】甲的作法如圖一:∵為等邊三角形,AD是的角平分線∴由甲的作法可知,在和中,故甲的作法正確;乙的作法如圖二:在和中,故乙的作法正確;故選:A.【點睛】本題主要借助尺規作圖考查全等三角形的判定,掌握全等三角形的判定方法是解題的關鍵.7、B【解析】【分析】根據平行線的判定方法結合已知條件逐項進行分析即可得.【詳解】A、如圖,∵四邊形ABCD是平行四邊形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四邊形AECF是平行四邊形,故不符合題意;B、如圖所示,AE=CF,不能得到四邊形AECF是平行四邊形,故符合題意;C、如圖,∵四邊形ABCD是平行四邊形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AFCE,∴四邊形AECF是平行四邊形,故不符合題意;D、如圖,∵四邊形ABCD是平行四邊形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AECF,∴四邊形AECF是平行四邊形,故不符合題意,故選B.【點睛】本題考查了平行四邊形的性質與判定,熟練掌握平行四邊形的判定定理與性質定理是解題的關鍵.8、B【解析】

根據無理數的概念可判斷出無理數的個數.【詳解】解:無理數有:,.故選B.【點睛】本題主要考查了無理數的定義,注意帶根號的要開不盡方才是無理數,無限不循環小數為無理數.9、A【解析】試題分析:根據平均數的定義列式計算,再根據找中位數要把數據按從小到大的順序排列,位于最中間的一個數(或兩個數的平均數)為中位數解答.平均數為:×(6+3+4+1+7)=1,按照從小到大的順序排列為:3,4,1,6,7,所以,中位數為:1.故選A.考點:中位數;算術平均數.10、C【解析】試題分析:分式方程去分母轉化為整式方程,表示出整式方程的解,根據解為非負數及分式方程分母不為1求出a的范圍即可.解:去分母得:2(2x﹣a)=x﹣2,解得:x=,由題意得:≥1且≠2,解得:a≥1且a≠4,故選C.點睛:此題考查了分式方程的解,需注意在任何時候都要考慮分母不為1.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】此題考查因式分解答案點評:利用提公因式、平方差公式、完全平方公式分解因式12、或【解析】分析:依據△DCM為直角三角形,需要分兩種情況進行討論:當∠CDM=90°時,△CDM是直角三角形;當∠CMD=90°時,△CDM是直角三角形,分別依據含30°角的直角三角形的性質以及等腰直角三角形的性質,即可得到折痕MN的長.詳解:分兩種情況:①如圖,當∠CDM=90°時,△CDM是直角三角形,∵在Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,∴∠C=30°,AB=AC=+2,由折疊可得,∠MDN=∠A=60°,∴∠BDN=30°,∴BN=DN=AN,∴BN=AB=,∴AN=2BN=,∵∠DNB=60°,∴∠ANM=∠DNM=60°,∴∠AMN=60°,∴AN=MN=;②如圖,當∠CMD=90°時,△CDM是直角三角形,由題可得,∠CDM=60°,∠A=∠MDN=60°,∴∠BDN=60°,∠BND=30°,∴BD=DN=AN,BN=BD,又∵AB=+2,∴AN=2,BN=,過N作NH⊥AM于H,則∠ANH=30°,∴AH=AN=1,HN=,由折疊可得,∠AMN=∠DMN=45°,∴△MNH是等腰直角三角形,∴HM=HN=,∴MN=,故答案為:或.點睛:本題考查了翻折變換-折疊問題,等腰直角三角形的性質,正確的作出圖形是解題的關鍵.折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.13、360°.【解析】

根據多邊形的外角和等于360°解答即可.【詳解】由多邊形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案為360°.【點睛】本題考查的是多邊形的內角和外角,掌握多邊形的外角和等于360°是解題的關鍵.14、【解析】

先提公因式b,然后再運用完全平方公式進行分解即可.【詳解】a2b﹣4ab+4b=b(a2﹣4a+4)=b(a﹣2)2,故答案為b(a﹣2)2.【點睛】本題考查了利用提公因式法與公式法分解因式,熟練掌握完全平方公式的結構特征是解本題的關鍵.15、1(x﹣1)1【解析】

先提取公因式1,再根據完全平方公式進行二次分解.【詳解】解:1x1-4x+1,=1(x1-1x+1),=1(x-1)1.故答案為:1(x﹣1)1【點睛】本題考查提公因式法與公式法的綜合運用,難度不大.16、【解析】分析:先根據根的判別式得到a-1=,把原式變形為,然后代入即可得出結果.詳解:由題意得:△=,∴,∴,即a(a-1)=1,∴a-1=,故答案為-3.點睛:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當△>0,方程有兩個不相等的實數根;當△<0,方程沒有實數根;當△=0,方程有兩個,相等的實數根,也考查了一元二次方程的定義.三、解答題(共8題,共72分)17、(1)商場至少購進乙種電冰箱14臺;(2)商場購進甲種電冰箱28臺,購進乙種電冰箱14(臺),購進丙種電冰箱38臺.【解析】

(1)設商場購進乙種電冰箱x臺,則購進甲種電冰箱2x臺,丙種電冰箱(80-3x)臺,根據“商場最多支出132000元用于購買這批電冰箱”列出不等式,解之即可得;(2)根據“總利潤=甲種冰箱利潤+乙種冰箱利潤+丙種冰箱利潤”列出W關于x的函數解析式,結合x的取值范圍,利用一次函數的性質求解可得.【詳解】(1)設商場購進乙種電冰箱x臺,則購進甲種電冰箱2x臺,丙種電冰箱(80﹣3x)臺.根據題意得:1200×2x+1600x+2000(80﹣3x)≤132000,解得:x≥14,∴商場至少購進乙種電冰箱14臺;(2)由題意得:2x≤80﹣3x且x≥14,∴14≤x≤16,∵W=220×2x+260x+280(80﹣3x)=﹣140x+22400,∴W隨x的增大而減小,∴當x=14時,W取最大值,且W最大=﹣140×14+22400=20440,此時,商場購進甲種電冰箱28臺,購進乙種電冰箱14(臺),購進丙種電冰箱38臺.【點睛】本題主要考查一次函數的應用與一元一次不等式的應用,解題的關鍵是理解題意找到題目蘊含的不等關系和相等關系,并據此列出不等式與函數解析式.18、(1)甲80件,乙20件;(2)x≤90【解析】

(1)甲種獎品購買了x件,乙種獎品購買了(100﹣x)件,利用共用2800元,列出方程后求解即可;(2)設甲種獎品購買了x件,乙種獎品購買了(100﹣x)件,根據購買這批獎品的總費用不超過2900元列不等式求解即可.【詳解】解:(1)設甲種獎品購買了x件,乙種獎品購買了(100﹣x)件,根據題意得30x+20(100﹣x)=2800,解得x=80,則100﹣x=20,答:甲種獎品購買了80件,乙種獎品購買了20件;(2)設甲種獎品購買了x件,乙種獎品購買了(100﹣x)件,根據題意得:30x+20(100﹣x)≤2900,解得:x≤90,【點睛】本題主要考查一元一次方程與一元一次不等式的應用,根據已知條件正確列出方程與不等式是解題的關鍵.19、每件襯衫應降價1元.【解析】

利用襯衣平均每天售出的件數×每件盈利=每天銷售這種襯衣利潤列出方程解答即可.【詳解】解:設每件襯衫應降價x元.根據題意,得(40-x)(1+2x)=110,整理,得x2-30x+10=0,解得x1=10,x2=1.∵“擴大銷售量,減少庫存”,∴x1=10應舍去,∴x=1.答:每件襯衫應降價1元.【點睛】此題主要考查了一元二次方程的應用,利用基本數量關系:平均每天售出的件數×每件盈利=每天銷售的利潤是解題關鍵.20、(1)80,100;(2)100件,22000元;(3)答案見解析.【解析】

(1)先設A型商品的進價為a元/件,求得B型商品的進價為(a+20)元/件,由題意得等式,解得a=80,再檢驗a是否符合條件,得到答案.(2)先設購機A型商品x件,則由題意可得到等式80x+100(200﹣x)≤18000,解得,x≥100;再設獲得的利潤為w元,由題意可得w=(160﹣80)x+(240﹣100)(200﹣x)=﹣60x+28000,當x=100時代入w=﹣60x+28000,從而得答案.(3)設獲得的利潤為w元,由題意可得w(a﹣60)x+28000,分類討論:當50<a<60時,當a=60時,當60<a<70時,各個階段的利潤,得出最大值.【詳解】解:(1)設A型商品的進價為a元/件,則B型商品的進價為(a+20)元/件,,解得,a=80,經檢驗,a=80是原分式方程的解,∴a+20=100,答:A、B型商品的進價分別為80元/件、100元/件;(2)設購機A型商品x件,80x+100(200﹣x)≤18000,解得,x≥100,設獲得的利潤為w元,w=(160﹣80)x+(240﹣100)(200﹣x)=﹣60x+28000,∴當x=100時,w取得最大值,此時w=22000,答:該客商計劃最多投入18000元用于購買這兩種商品,則至少要購進100件甲商品,若售完這些商品,則商場可獲得的最大利潤是22000元;(3)w=(160﹣80+a)x+(240﹣100)(200﹣x)=(a﹣60)x+28000,∵50<a<70,∴當50<a<60時,a﹣60<0,y隨x的增大而減小,則甲100件,乙100件時利潤最大;當a=60時,w=28000,此時甲乙只要是滿足條件的整數即可;當60<a<70時,a﹣60>0,y隨x的增大而增大,則甲120件,乙80件時利潤最大.【點睛】本題考察一次函數的應用及一次不等式的應用,屬于中檔題,難度不大.21、(1);(2);(3)【解析】

(1)由條件可求得A、C的坐標,利用待定系數法可求得直線AC的表達式;(2)結合圖形,當直線平移到過C、A時與矩形有一個公共點,則可求得b的取值范圍;(3)由題意可知直線l過(0,10),結合圖象可知當直線過B點時與矩形有一個公共點,結合圖象可求得k的取值范圍.【詳解】解:(1),設直線表達式為,,解得直線表達式為;(2)直線可以看到是由直線平移得到,當直線過時,直線與矩形有一個公共點,如圖1,當過點時,代入可得,解得.當過點時,可得直線與矩形有公共點時,的取值范圍為;(3),直線過,且,如圖2,直線繞點旋轉,當直線過點時,與矩形有一個公共點,逆時針旋轉到與軸重合時與矩形有公共點,當過點時,代入可得,解得直線:與矩形沒有公共點時的取值范圍為【點睛】本題為一次函數的綜合應用,涉及待定系數法、直線的平移、旋轉及數形結合思想等知識.在(1)中利用待定系數法是解題的關鍵,在(2)、(3)中確定出直線與矩形OABC有一個公共點的位置是解題的關鍵.本題考查知識點較多,綜合性較強,難度適中.22、x+y,.【解析】試題分析:根據分式的減法和除法可以化簡題目中的式子,然后將x、y的值代入即可解答本題.試題解析:原式===x+y,當x=,y==2時,原式=﹣2+2=.23、(1)1件;(2)第40天,利潤最大7200元;(3)46天【解析】試題分析:(1)根據待定系數法解出一次函數解析式,然后把x=10代入即可;(2)設利潤為y元,則當1≤x<50時,y=﹣2x2+160x+4000;當50≤x≤90時,y=﹣120x+12000,分別求出各段上的最大值,比較即可得到結論;(3)直接寫出在該產品銷售的過程中,共有46天銷售利潤不低于5400元.試題解析:解:(1)∵n與x成一次函數,∴設n=kx+b,將x=1,m=198,x=3,m=194代入,得:,解得:,所以n關于x的一次函數表達式為n=-2x+200;當x=10時,n=-2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論