2023屆吉林省白城地區大安縣中考聯考數學試卷含解析_第1頁
2023屆吉林省白城地區大安縣中考聯考數學試卷含解析_第2頁
2023屆吉林省白城地區大安縣中考聯考數學試卷含解析_第3頁
2023屆吉林省白城地區大安縣中考聯考數學試卷含解析_第4頁
2023屆吉林省白城地區大安縣中考聯考數學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.某小組在“用頻率估計概率”的試驗中,統計了某種結果出現的頻率,繪制了如圖所示的折線圖,那么符合這一結果的試驗最有可能的是()A.在裝有1個紅球和2個白球(除顏色外完全相同)的不透明袋子里隨機摸出一個球是“白球”B.從一副撲克牌中任意抽取一張,這張牌是“紅色的”C.擲一枚質地均勻的硬幣,落地時結果是“正面朝上”D.擲一個質地均勻的正六面體骰子,落地時面朝上的點數是62.下列計算中,正確的是()A.a?3a=4a2 B.2a+3a=5a2C.(ab)3=a3b3 D.7a3÷14a2=2a3.點P(﹣2,5)關于y軸對稱的點的坐標為()A.(2,﹣5) B.(5,﹣2) C.(﹣2,﹣5) D.(2,5)4.如圖,⊙O的半徑OD⊥弦AB于點C,連結AO并延長交⊙O于點E,連結EC.若AB=8,CD=2,則EC的長為()A. B.8 C. D.5.一次函數y1=kx+1﹣2k(k≠0)的圖象記作G1,一次函數y2=2x+3(﹣1<x<2)的圖象記作G2,對于這兩個圖象,有以下幾種說法:①當G1與G2有公共點時,y1隨x增大而減小;②當G1與G2沒有公共點時,y1隨x增大而增大;③當k=2時,G1與G2平行,且平行線之間的距離為65下列選項中,描述準確的是()A.①②正確,③錯誤 B.①③正確,②錯誤C.②③正確,①錯誤 D.①②③都正確6.如圖,在菱形ABCD中,AB=5,∠BCD=120°,則△ABC的周長等于()A.20 B.15 C.10 D.57.如圖,在直角坐標系中,等腰直角△ABO的O點是坐標原點,A的坐標是(﹣4,0),直角頂點B在第二象限,等腰直角△BCD的C點在y軸上移動,我們發現直角頂點D點隨之在一條直線上移動,這條直線的解析式是()A.y=﹣2x+1 B.y=﹣x+2 C.y=﹣3x﹣2 D.y=﹣x+28.下列圖形是軸對稱圖形的有()A.2個 B.3個 C.4個 D.5個9.如圖,在矩形ABCD中,E是AD上一點,沿CE折疊△CDE,點D恰好落在AC的中點F處,若CD=,則△ACE的面積為()A.1 B. C.2 D.210.如圖,3個形狀大小完全相同的菱形組成網格,菱形的頂點稱為格點.已知菱形的一個角為60°,A、B、C都在格點上,點D在過A、B、C三點的圓弧上,若也在格點上,且∠AED=∠ACD,則∠AEC度數為()A.75° B.60° C.45° D.30°二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,直線y=x+2與反比例函數y=的圖象在第一象限交于點P.若OP=,則k的值為________.12.若一個多邊形的每一個外角都等于40°,則這個多邊形的內角和是_____.13.已知二次函數的圖象開口向上,且經過原點,試寫出一個符合上述條件的二次函數的解析式:_____.(只需寫出一個)14.如圖,將直線y=x向下平移b個單位長度后得到直線l,l與反比例函數y=(x>0)的圖象相交于點A,與x軸相交于點B,則OA2﹣OB2的值為_____.15.已知a2+1=3a,則代數式a+的值為.16.如圖,是用火柴棒拼成的圖形,則第n個圖形需_____根火柴棒.三、解答題(共8題,共72分)17.(8分)化簡求值:,其中x是不等式組的整數解.18.(8分)已知,,,斜邊,將繞點順時針旋轉,如圖1,連接.(1)填空:;(2)如圖1,連接,作,垂足為,求的長度;(3)如圖2,點,同時從點出發,在邊上運動,沿路徑勻速運動,沿路徑勻速運動,當兩點相遇時運動停止,已知點的運動速度為1.5單位秒,點的運動速度為1單位秒,設運動時間為秒,的面積為,求當為何值時取得最大值?最大值為多少?19.(8分)如圖,△ABC內接于⊙O,∠B=600,CD是⊙O的直徑,點P是CD延長線上的一點,且AP=AC.(1)求證:PA是⊙O的切線;(2)若PD=,求⊙O的直徑.20.(8分)在以“關愛學生、安全第一”為主題的安全教育宣傳月活動中,某學校為了了解本校學生的上學方式,在全校范圍內隨機抽查部分學生,了解到上學方式主要有:A:結伴步行、B:自行乘車、C:家人接送、D:其他方式,并將收集的數據整理繪制成如下兩幅不完整的統計圖.請根據圖中信息,解答下列問題:(1)本次抽查的學生人數是多少人?(2)請補全條形統計圖;請補全扇形統計圖;(3)“自行乘車”對應扇形的圓心角的度數是度;(4)如果該校學生有2000人,請你估計該校“家人接送”上學的學生約有多少人?21.(8分)為了解某校九年級男生的體能情況,體育老師隨機抽取部分男生進行引體向上測試,并對成績進行了統計,繪制出如下的統計圖①和圖②,請跟進相關信息,解答下列問題:(1)本次抽測的男生人數為,圖①中m的值為;(2)求本次抽測的這組數據的平均數、眾數和中位數;(3)若規定引體向上5次以上(含5次)為體能達標,根據樣本數據,估計該校350名九年級男生中有多少人體能達標.22.(10分)計算:4cos30°+|3﹣|﹣()﹣1+(π﹣2018)023.(12分)閱讀材料:小明在學習二次根式后,發現一些含根號的式子可以寫成另一個式子的平方,如:,善于思考的小明進行了以下探索:設(其中均為整數),則有.∴.這樣小明就找到了一種把部分的式子化為平方式的方法.請你仿照小明的方法探索并解決下列問題:當均為正整數時,若,用含m、n的式子分別表示,得=,=;(2)利用所探索的結論,找一組正整數,填空:+=(+)2;(3)若,且均為正整數,求的值.24.如圖,將等邊△ABC繞點C順時針旋轉90°得到△EFC,∠ACE的平分線CD交EF于點D,連接AD、AF.求∠CFA度數;求證:AD∥BC.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

根據統計圖可知,試驗結果在0.16附近波動,即其概率P≈0.16,計算四個選項的概率,約為0.16者即為正確答案.【詳解】根據圖中信息,某種結果出現的頻率約為0.16,在裝有1個紅球和2個白球(除顏色外完全相同)的不透明袋子里隨機摸出一個球是“白球”的概率為≈0.67>0.16,故A選項不符合題意,從一副撲克牌中任意抽取一張,這張牌是“紅色的”概率為≈0.48>0.16,故B選項不符合題意,擲一枚質地均勻的硬幣,落地時結果是“正面朝上”的概率是=0.5>0.16,故C選項不符合題意,擲一個質地均勻的正六面體骰子,落地時面朝上的點數是6的概率是≈0.16,故D選項符合題意,故選D.【點睛】本題考查了利用頻率估計概率,大量反復試驗下頻率穩定值即概率.用到的知識點為:頻率=所求情況數與總情況數之比.熟練掌握概率公式是解題關鍵.2、C【解析】

根據同底數冪的運算法則進行判斷即可.【詳解】解:A、a?3a=3a2,故原選項計算錯誤;B、2a+3a=5a,故原選項計算錯誤;C、(ab)3=a3b3,故原選項計算正確;D、7a3÷14a2=a,故原選項計算錯誤;故選C.【點睛】本題考點:同底數冪的混合運算.3、D【解析】

根據關于y軸對稱點的坐標特點:橫坐標互為相反數,縱坐標不變可得答案.【詳解】點關于y軸對稱的點的坐標為,故選:D.【點睛】本題主要考查了平面直角坐標系中點的對稱,熟練掌握點的對稱特點是解決本題的關鍵.4、D【解析】∵⊙O的半徑OD⊥弦AB于點C,AB=8,∴AC=AB=1.設⊙O的半徑為r,則OC=r-2,在Rt△AOC中,∵AC=1,OC=r-2,∴OA2=AC2+OC2,即r2=12+(r﹣2)2,解得r=2.∴AE=2r=3.連接BE,∵AE是⊙O的直徑,∴∠ABE=90°.在Rt△ABE中,∵AE=3,AB=8,∴.在Rt△BCE中,∵BE=6,BC=1,∴.故選D.5、D【解析】

畫圖,找出G2的臨界點,以及G1的臨界直線,分析出G1過定點,根據k的正負與函數增減變化的關系,結合函數圖象逐個選項分析即可解答.【詳解】解:一次函數y2=2x+3(﹣1<x<2)的函數值隨x的增大而增大,如圖所示,N(﹣1,2),Q(2,7)為G2的兩個臨界點,易知一次函數y1=kx+1﹣2k(k≠0)的圖象過定點M(2,1),直線MN與直線MQ為G1與G2有公共點的兩條臨界直線,從而當G1與G2有公共點時,y1隨x增大而減小;故①正確;當G1與G2沒有公共點時,分三種情況:一是直線MN,但此時k=0,不符合要求;二是直線MQ,但此時k不存在,與一次函數定義不符,故MQ不符合題意;三是當k>0時,此時y1隨x增大而增大,符合題意,故②正確;當k=2時,G1與G2平行正確,過點M作MP⊥NQ,則MN=3,由y2=2x+3,且MN∥x軸,可知,tan∠PNM=2,∴PM=2PN,由勾股定理得:PN2+PM2=MN2∴(2PN)2+(PN)2=9,∴PN=35∴PM=65故③正確.綜上,故選:D.【點睛】本題是一次函數中兩條直線相交或平行的綜合問題,需要數形結合,結合一次函數的性質逐條分析解答,難度較大.6、B【解析】∵ABCD是菱形,∠BCD=120°,∴∠B=60°,BA=BC.∴△ABC是等邊三角形.∴△ABC的周長=3AB=1.故選B7、D【解析】

抓住兩個特殊位置:當BC與x軸平行時,求出D的坐標;C與原點重合時,D在y軸上,求出此時D的坐標,設所求直線解析式為y=kx+b,將兩位置D坐標代入得到關于k與b的方程組,求出方程組的解得到k與b的值,即可確定出所求直線解析式.【詳解】當BC與x軸平行時,過B作BE⊥x軸,過D作DF⊥x軸,交BC于點G,如圖1所示.∵等腰直角△ABO的O點是坐標原點,A的坐標是(﹣4,0),∴AO=4,∴BC=BE=AE=EO=GF=OA=1,OF=DG=BG=CG=BC=1,DF=DG+GF=3,∴D坐標為(﹣1,3);當C與原點O重合時,D在y軸上,此時OD=BE=1,即D(0,1),設所求直線解析式為y=kx+b(k≠0),將兩點坐標代入得:,解得:.則這條直線解析式為y=﹣x+1.故選D.【點睛】本題屬于一次函數綜合題,涉及的知識有:待定系數法確定一次函數解析式,等腰直角三角形的性質,坐標與圖形性質,熟練運用待定系數法是解答本題的關鍵.8、C【解析】試題分析:根據軸對稱圖形的概念:如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形.據此對圖中的圖形進行判斷.解:圖(1)有一條對稱軸,是軸對稱圖形,符合題意;圖(2)不是軸對稱圖形,因為找不到任何這樣的一條直線,使它沿這條直線折疊后,直線兩旁的部分能夠重合,即不滿足軸對稱圖形的定義.不符合題意;圖(3)有二條對稱軸,是軸對稱圖形,符合題意;圖(3)有五條對稱軸,是軸對稱圖形,符合題意;圖(3)有一條對稱軸,是軸對稱圖形,符合題意.故軸對稱圖形有4個.故選C.考點:軸對稱圖形.9、B【解析】

由折疊的性質可得CD=CF=,DE=EF,AC=,由三角形面積公式可求EF的長,即可求△ACE的面積.【詳解】解:∵點F是AC的中點,∴AF=CF=AC,∵將△CDE沿CE折疊到△CFE,∴CD=CF=,DE=EF,∴AC=,在Rt△ACD中,AD==1.∵S△ADC=S△AEC+S△CDE,∴×AD×CD=×AC×EF+×CD×DE∴1×=EF+DE,∴DE=EF=1,∴S△AEC=××1=.故選B.【點睛】本題考查了翻折變換,勾股定理,熟練運用三角形面積公式求得DE=EF=1是解決本題的關鍵.10、B【解析】

將圓補充完整,利用圓周角定理找出點E的位置,再根據菱形的性質即可得出△CME為等邊三角形,進而即可得出∠AEC的值.【詳解】將圓補充完整,找出點E的位置,如圖所示.∵弧AD所對的圓周角為∠ACD、∠AEC,∴圖中所標點E符合題意.∵四邊形∠CMEN為菱形,且∠CME=60°,∴△CME為等邊三角形,∴∠AEC=60°.故選B.【點睛】本題考查了菱形的性質、等邊三角形的判定依據圓周角定理,根據圓周角定理結合圖形找出點E的位置是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】設點P(m,m+2),∵OP=,∴=,解得m1=1,m2=﹣1(不合題意舍去),∴點P(1,1),∴1=,解得k=1.點睛:本題考查了反比例函數與一次函數的交點坐標,仔細審題,能夠求得點P的坐標是解題的關鍵.12、【解析】

根據任何多邊形的外角和都是360度,先利用360°÷40°求出多邊形的邊數,再根據多邊形的內角和公式(n-2)?180°計算即可求解.【詳解】解:多邊形的邊數是:360°÷40°=9,

則內角和是:(9-2)?180°=1260°.

故答案為1260°.【點睛】本題考查正多邊形的外角與邊數的關系,求出多邊形的邊數是解題的關鍵.13、y=x2等【解析】分析:根據二次函數的圖象開口向上知道a>1,又二次函數的圖象過原點,可以得到c=1,所以解析式滿足a>1,c=1即可.詳解:∵二次函數的圖象開口向上,∴a>1.∵二次函數的圖象過原點,∴c=1.故解析式滿足a>1,c=1即可,如y=x2.故答案為y=x2(答案不唯一).點睛:本題是開放性試題,考查了二次函數的性質,二次函數圖象上點的坐標特征,對考查學生所學函數的深入理解、掌握程度具有積極的意義,但此題若想答對需要滿足所有條件,如果學生沒有注意某一個條件就容易出錯.本題的結論是不唯一的,其解答思路滲透了數形結合的數學思想.14、1.【解析】解:∵平移后解析式是y=x﹣b,代入y=得:x﹣b=,即x2﹣bx=5,y=x﹣b與x軸交點B的坐標是(b,0),設A的坐標是(x,y),∴OA2﹣OB2=x2+y2﹣b2=x2+(x﹣b)2﹣b2=2x2﹣2xb=2(x2﹣xb)=2×5=1,故答案為1.點睛:本題是反比例函數綜合題,用到的知識點有:一次函數的平移規律,一次函數與反比例函數的交點坐標,利用了轉化及方程的思想,其中利用平移的規律表示出y=x平移后的解析式是解答本題的關鍵.15、1【解析】

根據題意a2+1=1a,整體代入所求的式子即可求解.【詳解】∵a2+1=1a,∴a+=+===1.故答案為1.16、2n+1.【解析】

解:根據圖形可得出:當三角形的個數為1時,火柴棒的根數為3;當三角形的個數為2時,火柴棒的根數為5;當三角形的個數為3時,火柴棒的根數為7;當三角形的個數為4時,火柴棒的根數為9;……由此可以看出:當三角形的個數為n時,火柴棒的根數為3+2(n﹣1)=2n+1.故答案為:2n+1.三、解答題(共8題,共72分)17、當x=﹣3時,原式=﹣,當x=﹣2時,原式=﹣1.【解析】

先化簡分式,再解不等式組求得x的取值范圍,在此范圍內找到符合分式有意義的x的整數值,代入計算可得.【詳解】原式=÷=?=,解不等式組,解不等式①,得:x>﹣4,解不等式②,得:x≤﹣1,∴不等式組的解集為﹣4<x≤﹣1,∴不等式的整數解是﹣3,﹣2,﹣1.又∵x+1≠0,x﹣1≠0∴x≠±1,∴x=﹣3或x=﹣2,當x=﹣3時,原式=﹣,當x=﹣2時,原式=﹣1.【點睛】本題考查了分式的化簡求值及一元一次不等式組的整數解,求分式的值時,一定要選擇使每個分式都有意義的未知數的值.18、(1)1;(2);(3)x時,y有最大值,最大值.【解析】

(1)只要證明△OBC是等邊三角形即可;(2)求出△AOC的面積,利用三角形的面積公式計算即可;(3)分三種情形討論求解即可解決問題:①當0<x時,M在OC上運動,N在OB上運動,此時過點N作NE⊥OC且交OC于點E.②當x≤4時,M在BC上運動,N在OB上運動.③當4<x≤4.8時,M、N都在BC上運動,作OG⊥BC于G.【詳解】(1)由旋轉性質可知:OB=OC,∠BOC=1°,∴△OBC是等邊三角形,∴∠OBC=1°.故答案為1.(2)如圖1中.∵OB=4,∠ABO=30°,∴OAOB=2,ABOA=2,∴S△AOC?OA?AB2×2.∵△BOC是等邊三角形,∴∠OBC=1°,∠ABC=∠ABO+∠OBC=90°,∴AC,∴OP.(3)①當0<x時,M在OC上運動,N在OB上運動,此時過點N作NE⊥OC且交OC于點E.則NE=ON?sin1°x,∴S△OMN?OM?NE1.5xx,∴yx2,∴x時,y有最大值,最大值.②當x≤4時,M在BC上運動,N在OB上運動.作MH⊥OB于H.則BM=8﹣1.5x,MH=BM?sin1°(8﹣1.5x),∴yON×MHx2+2x.當x時,y取最大值,y,③當4<x≤4.8時,M、N都在BC上運動,作OG⊥BC于G.MN=12﹣2.5x,OG=AB=2,∴y?MN?OG=12x,當x=4時,y有最大值,最大值=2.綜上所述:y有最大值,最大值為.【點睛】本題考查幾何變換綜合題、30度的直角三角形的性質、等邊三角形的判定和性質、三角形的面積等知識,解題的關鍵是學會用分類討論的思想思考問題.19、(1)見解析(2)2【解析】解:(1)證明:連接OA,∵∠B=600,∴∠AOC=2∠B=1.∵OA=OC,∴∠OAC=∠OCA=2.又∵AP=AC,∴∠P=∠ACP=2.∴∠OAP=∠AOC﹣∠P=3.∴OA⊥PA.∵OA是⊙O的半徑,∴PA是⊙O的切線.(2)在Rt△OAP中,∵∠P=2,∴PO=2OA=OD+PD.又∵OA=OD,∴PD=OA.∵PD=,∴2OA=2PD=2.∴⊙O的直徑為2..(1)連接OA,根據圓周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=2,再由AP=AC得出∠P=2,繼而由∠OAP=∠AOC﹣∠P,可得出OA⊥PA,從而得出結論.(2)利用含2的直角三角形的性質求出OP=2OA,可得出OP﹣PD=OD,再由PD=,可得出⊙O的直徑.20、(1)本次抽查的學生人數是120人;(2)見解析;(3)126;(4)該校“家人接送”上學的學生約有500人.【解析】

(1)本次抽查的學生人數:18÷15%=120(人);(2)A:結伴步行人數120﹣42﹣30﹣18=30(人),據此補全條形統計圖;(3)“自行乘車”對應扇形的圓心角的度數360°×=126°;(4)估計該校“家人接送”上學的學生約有:2000×25%=500(人).【詳解】解:(1)本次抽查的學生人數:18÷15%=120(人),答:本次抽查的學生人數是120人;(2)A:結伴步行人數120﹣42﹣30﹣18=30(人),補全條形統計圖如下:“結伴步行”所占的百分比為×100%=25%;“自行乘車”所占的百分比為×100%=35%,

“自行乘車”在扇形統計圖中占的度數為360°×35%=126°,補全扇形統計圖,如圖所示;(3)“自行乘車”對應扇形的圓心角的度數360°×=126°,故答案為126;(4)估計該校“家人接送”上學的學生約有:2000×25%=500(人),答:該校“家人接送”上學的學生約有500人.【點睛】本題主要考查條形統計圖及扇形統計圖及相關計算,用樣本估計總體.解題的關鍵是讀懂統計圖,從條形統計圖中得到必要的信息是解決問題的關鍵.21、(1)50、1;(2)平均數為5.16次,眾數為5次,中位數為5次;(3)估計該校350名九年級男生中有2人體能達標.【解析】分析:(Ⅰ)根據4次的人數及其百分比可得總人數,用6次的人數除以總人數求得m即可;(Ⅱ)根據平均數、眾數、中位數的定義求解可得;(Ⅲ)總人數乘以樣本中5、6、7次人數之和占被調查人數的比例可得.詳解:(Ⅰ)本次抽測的男生人數為10÷20%=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論