期權期貨與其他衍生產品第九版課后習題與答案Chapter(15)4258_第1頁
期權期貨與其他衍生產品第九版課后習題與答案Chapter(15)4258_第2頁
期權期貨與其他衍生產品第九版課后習題與答案Chapter(15)4258_第3頁
期權期貨與其他衍生產品第九版課后習題與答案Chapter(15)4258_第4頁
期權期貨與其他衍生產品第九版課后習題與答案Chapter(15)4258_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

CHAPTER15

TheBlack-Scholes-MertonModel

PracticeQuestions

Problem15.1.

WhatdoestheBlack–Scholes–Mertonstockoptionpricingmodelassumeaboutthe

probabilitydistributionofthestockpriceinoneyear?Whatdoesitassumeaboutthe

probabilitydistributionofthecontinuouslycompoundedrateofreturnonthestockduring

theyear?

TheBlack–Scholes–Mertonoptionpricingmodelassumesthattheprobabilitydistributionof

thestockpricein1year(oratanyotherfuturetime)islognormal.Itassumesthatthe

continuouslycompoundedrateofreturnonthestockduringtheyearisnormallydistributed.

Problem15.2.

Thevolatilityofastockpriceis30%perannum.Whatisthestandarddeviationofthe

percentagepricechangeinonetradingday?

Thestandarddeviationofthepercentagepricechangeintimetistwhere

thevolatility.Inthisproblem03and,assuming252tradingdaysinoneyear,

is

t12520004

t0300040019or1.9%.

sothat

Problem15.3.

Explaintheprincipleofrisk-neutralvaluation.

Thepriceofanoptionorotherderivativewhenexpressedintermsofthepriceofthe

underlyingstockisindependentofriskpreferences.Optionsthereforehavethesamevaluein

arisk-neutralworldastheydointherealworld.Wemaythereforeassumethattheworldis

riskneutralforthepurposesofvaluingoptions.Thissimplifiestheanalysis.Inarisk-neutral

worldallsecuritieshaveanexpectedreturnequaltorisk-freeinterestrate.Also,ina

risk-neutralworld,theappropriatediscountratetouseforexpectedfuturecashflowsisthe

risk-freeinterestrate.

Problem15.4.

Calculatethepriceofathree-monthEuropeanputoptiononanon-dividend-payingstock

withastrikepriceof$50whenthecurrentstockpriceis$50,therisk-freeinterestrateis

10%perannum,andthevolatilityis30%perannum.

InthiscaseS50,K50,

r01,03,T025,and

0

dln(5050)(010092)02502417

03025

1

dd0302500917

2

1

TheEuropeanputpriceis

50N(00917)e0102550N(02417)

5004634e010255004045237

or$2.37.

Problem15.5.

WhatdifferencedoesitmaketoyourcalculationsinProblem15.4ifadividendof$1.50is

expectedintwomonths?

Inthiscasewemustsubtractthepresentvalueofthedividendfromthestockpricebefore

usingBlack–Scholes-Merton.Hencetheappropriatevalueof

Sis

0

S50150e01667014852

AsbeforeK50,r01,003,andT025.Inthiscase

dln(485250)(010092)02500414

03025

1

dd0302501086

2

1

TheEuropeanputpriceis

50N(01086)e010254852N(00414)

5005432e01025485204835303

or$3.03.

Problem15.6.

Whatisimpliedvolatility?Howcanitbecalculated?

TheimpliedvolatilityisthevolatilitythatmakestheBlack

–Scholes-Mertonpriceofan

optionequaltoitsmarketprice.Theimpliedvolatilityiscalculatedusinganiterative

procedure.Asimpleapproachisthefollowing.Supposewehavetwovolatilitiesonetoohigh

(i.e.,givinganoptionpricegreaterthanthemarketprice)andtheothertoolow(i.e.,giving

anoptionpricelowerthanthemarketprice).Bytestingthevolatilitythatishalfwaybetween

thetwo,wegetanewtoo-highvolatilityoranewtoo-lowvolatility.Ifwesearchinitiallyfor

twovolatilities,onetoohighandtheothertoolowwecanusethisprocedurerepeatedlyto

bisecttherangeandconvergeonthecorrectimpliedvolatility.Othermoresophisticated

approaches(e.g.,involvingtheNewton-Raphsonprocedure)areusedinpractice.

Problem15.7.

Astockpriceiscurrently$40.Assumethattheexpectedreturnfromthestockis15%andits

volatilityis25%.Whatistheprobabilitydistributionfortherateofreturn(withcontinuous

compounding)earnedoveratwo-yearperiod?

Inthiscase015and025.Fromequation(15.7)theprobabilitydistributionfor

therateofreturnoveratwo-yearperiodwithcontinuouscompoundingis:

0.252,0.252

0.15

2

2

i.e.,

(0.11875,0.03125)

Theexpectedvalueofthereturnis11.875%perannumandthestandarddeviationis17.7%

perannum.

Problem15.8.

AstockpricefollowsgeometricBrownianmotionwithanexpectedreturnof16%anda

volatilityof35%.Thecurrentpriceis$38.

a)WhatistheprobabilitythataEuropeancalloptiononthestockwithanexerciseprice

of$40andamaturitydateinsixmonthswillbeexercised?

b)WhatistheprobabilitythataEuropeanputoptiononthestockwiththesameexercise

priceandmaturitywillbeexercised?

a)Therequiredprobabilityistheprobabilityofthestockpricebeingabove$40insix

monthstime.SupposethatthestockpriceinsixmonthsisS

T

0.352

2

lnS~ln380.16

0.5,0.3520.5

T

i.e.,

lnS~3.687,0.2472

T

Sinceln403689,werequiretheprobabilityofln(ST)>3.689.Thisis

36893687

1N

1N(0008)

0247

SinceN(0.008)=0.5032,therequiredprobabilityis0.4968.

b)Inthiscasetherequiredprobabilityistheprobabilityofthestockpricebeinglessthan

$40insixmonthstime.Itis

10496805032

Problem15.9.

Usingthenotationinthechapter,provethata95%confidenceintervalfor

Sisbetween

T

Se

0

and

Se

0

(22)T196

T

(22)T196

T

Fromequation(15.3):

2

2

lnS~lnST,T

2

T

0

95%confidenceintervalsforlnSaretherefore

T

2

lnS()T196T

2

0

and

2

lnS()T196T

2

0

95%confidenceintervalsforSaretherefore

T

e

and

and

e

lnS0(

lnS0(

22)T196

T

T

22)T196

T

i.e.

Se

0

Se

0

(22)T196

(22)T196

T

Problem15.10.

Aportfoliomanagerannouncesthattheaverageofthereturnsrealizedineachofthelast10

yearsis20%perannum.Inwhatrespectisthisstatementmisleading?

ThisproblemrelatestothematerialinSection15.3.Thestatementismisleadinginthata

certainsumofmoney,say$1000,wheninvestedfor10yearsinthefundwouldhaverealized

areturn(withannualcompounding)oflessthan20%perannum.

Theaverageofthereturnsrealizedineachyearisalwaysgreaterthanthereturnperannum

(withannualcompounding)realizedover10years.Thefirstisanarithmeticaverageofthe

returnsineachyear;thesecondisageometricaverageofthesereturns.

Problem15.11.

Assumethatanon-dividend-payingstockhasanexpectedreturnof

andavolatilityof.

Aninnovativefinancialinstitutionhasjustannouncedthatitwilltradeaderivativethatpays

offadollaramountequaltolnSTattimeTwhereSdenotesthevaluesofthestock

T

priceattimeT.

a)Userisk-neutralvaluationtocalculatethepriceofthederivativeattimetintermof

thestockprice,S,attimet

b)Confirmthatyourpricesatisfiesthedifferentialequation(15.16)

a)Attimet,theexpectedvalueoflnSisfromequation(15.3)

T

lnS(2/2)(Tt)

Inarisk-neutralworldtheexpectedvalueof

lnS(r2/2)(Tt)

lnSTistherefore

Usingrisk-neutralvaluationthevalueofthederivativeattimetis

er(Tt)[lnS(r2/2)(Tt)]

b)If

fer(Tt)[lnS(r2/2)(Tt)]

then

ftrer(Tt)

[lnS(r2/2)(Tt)]er(Tt)r/2

2

fer(Tt)

S

S

2fer(Tt)

S2

S2

Theleft-handsideoftheBlack-Scholes-Mertondifferentialequationis

er(Tt)rlnSr(r

/2

2/2)(Tt)(r2/2)r

2

rlnSr(r

2/2)(Tt)

er(Tt)

rf

Hencethedifferentialequationissatisfied.

Problem15.12.

ConsideraderivativethatpaysoffSattimeTwhereSisthestockpriceatthattime.

n

T

T

WhenthestockpaysnodividendsanditspricefollowsgeometricBrownianmotion,itcanbe

shownthatitspriceattimet(tT)hastheform

h(tT)Sn

whereSisthestockpriceattimetandhisafunctiononlyoftandT.

(a)BysubstitutingintotheBlack–Scholes–Mertonpartialdifferentialequationderivean

ordinarydifferentialequationsatisfiedbyh(tT).

(b)Whatistheboundaryconditionforthedifferentialequationforh(tT)?

(c)Showthat

h(tT)e[052n(n1)r(n1)](Tt)

whereristherisk-freeinterestrateand

isthestockpricevolatility.

IfG(St)h(tT)SnthenGthSn,GShnSn1,and2GS2hn(n1)Sn2

t

wherehht.SubstitutingintotheBlack–Scholes–Mertondifferentialequationwe

t

obtain

hrhn12hn(n1)rh

2

t

ThederivativeisworthSnwhentT.Theboundaryconditionforthisdifferential

equationisthereforeh(TT)1

Theequation

h(tT)e[052n(n1)r(n1)](Tt)

satisfiestheboundaryconditionsinceitcollapsestoh1whentT.Itcanalsobeshown

thatitsatisfiesthedifferentialequationin(a).Alternativelywecansolvethedifferential

equationin(a)directly.Thedifferentialequationcanbewritten

h

tr(n1)12n(n1)

h

2

Thesolutiontothisis

or

lnh[r(n1)12n(n1)](Tt)

2

h(tT)e[052n(n1)r(n1)](Tt)

Problem15.13.

WhatisthepriceofaEuropeancalloptiononanon-dividend-payingstockwhenthestock

priceis$52,thestrikepriceis$50,therisk-freeinterestrateis12%perannum,thevolatility

is30%perannum,andthetimetomaturityisthreemonths?

r012,030

andT025.

InthiscaseS52,K50,

0

ln(5250)(0120322)02505365

030025

d

1

dd03002503865

2

1

ThepriceoftheEuropeancallis

52N(05365)50e012025N(03865)

520704250e00306504

506

or$5.06.

Problem15.14.

WhatisthepriceofaEuropeanputoptiononanon-dividend-payingstockwhenthestock

priceis$69,thestrikepriceis$70,therisk-freeinterestrateis5%perannum,thevolatility

is35%perannum,andthetimetomaturityissixmonths?

r005,035

andT05.

InthiscaseS69,K70,

0

ln(6970)(00503522)0501666

03505

d

1

dd0350500809

2

1

ThepriceoftheEuropeanputis

70e00505N(00809)69N(01666)

70e0025053236904338

640

or$6.40.

Problem15.15.

ConsideranAmericancalloptiononastock.Thestockpriceis$70,thetimetomaturityis

eightmonths,therisk-freerateofinterestis10%perannum,theexercisepriceis$65,and

thevolatilityis32%.Adividendof$1isexpectedafterthreemonthsandagainaftersix

months.Showthatitcanneverbeoptimaltoexercisetheoptiononeitherofthetwodividend

dates.UseDerivaGemtocalculatethepriceoftheoption.

UsingthenotationofSection15.12,DD1,K(1er(Tt2))65(1e0101667)107,

1

2

andK(1er(t2t1))65(1e01025)160.Since

DK(1er(Tt2)

)

)

1

and

DK(1er(t2t1)

2

Itisneveroptimaltoexercisethecalloptionearly.DerivaGemshowsthatthevalueofthe

optionis1094.

Problem15.16.

Acalloptiononanon-dividend-payingstockhasamarketpriceof$2.50.Thestockpriceis

$15,theexercisepriceis$13,thetimetomaturityisthreemonths,andtherisk-freeinterest

rateis5%perannum.Whatistheimpliedvolatility?

Inthecasec25,S15,

0

K13,T025,r005.Theimpliedvolatilitymustbe

calculatedusinganiterativeprocedure.

Avolatilityof0.2(or20%perannum)givesc220.Avolatilityof0.3gives

c232.A

volatilityof0.4givesc2507.Avolatilityof0.39gives

c2487.Byinterpolationthe

impliedvolatilityisabout0.396or39.6%perannum.

TheimpliedvolatilitycanalsobecalculatedusingDerivaGem.Selectequityasthe

UnderlyingTypeinthefirstworksheet.SelectBlack-ScholesEuropeanastheOptionType.

Inputstockpriceas15,therisk-freerateas5%,timetoexerciseas0.25,andexercisepriceas

13.Leavethedividendtableblankbecauseweareassumingnodividends.Selectthebutton

correspondingtocall.Selecttheimpliedvolatilitybutton.InputthePriceas2.5inthesecond

halfoftheoptiondatatable.HittheEnterkeyandclickoncalculate.DerivaGemwillshow

thevolatilityoftheoptionas39.64%.

Problem15.17.

Withthenotationusedinthischapter

(a)WhatisN(x)?

(b)ShowthatSN(d)Ker(Tt)N(d),whereSisthestockpriceattimet

1

2

ln(SK)(r22)(Tt)

d

1

Tt

ln(SK)(r22)(Tt)

d

2

Tt

(c)CalculatedSanddS.

1

2

(d)Showthatwhen

cSN(d)Ker(Tt)N(d)

1

2

c

t

rKer(Tt)N(d)SN(d)

2Tt

1

2

wherecisthepriceofacalloptiononanon-dividend-payingstock.

(e)ShowthatcSN(d).

1

(f)ShowthatthecsatisfiestheBlack–Scholes–Mertondifferentialequation.

(g)ShowthatcsatisfiestheboundaryconditionforaEuropeancalloption,i.e.,that

cmax(SK0)asttendstoT.

(a)SinceN(x)isthecumulativeprobabilitythatavariablewithastandardized

normaldistributionwillbelessthanx,N(x)istheprobabilitydensityfunctionfora

standardizednormaldistribution,thatis,

1

N(x)

e

2

x

2

2

N(d)N(d

Tt)

(b)

1

2

2(Tt)

1

2

d

1

2

exp2dTt

2

2

2

1

dTt(Tt)

2

N(d)exp

2

2

2

Because

ln(SK)(r22)(Tt)

d

2

Tt

itfollowsthat

1

Ke

r(Tt)

expdTt

2(Tt)

2

S

2

Asaresult

SN(d)Ke

1

N(d)

2

r(Tt)

whichistherequiredresult.

(c)

lnS(r2)(Tt)

d

1

K

2

Tt

lnSlnK(r2)(Tt)

2

Tt

Hence

d

1

SSTt

1

Similarly

lnSlnK(r2)(Tt)

d

2

2

Tt

and

d2

1

SSTt

Therefore:

dd

SS

1

2

(d)

cSN(d)Ke

N(d)

r(Tt)

1

2

c

d

d

SN(d)1rKe

N(d)Ke

N(d)

2

r(Tt)

r(Tt)

2

t

t

t

1

2

From(b):

Hence

SN(d)Ke

1

N(d)

2

r(Tt)

c

t

dd

12

rKe

N(d)SN(d)

tt

r(Tt

)

2

1

Since

ddTt

1

2

dd

(Tt)

1

2

ttt

2Tt

Hence

c

t

rKer(Tt)N(d)SN(d)

2Tt

1

2

(e)

FromdifferentiatingtheBlack–Scholes–Mertonformulaforacallpricewe

obtain

c

S

d

Ker(Tt)N(d)d

1

N(d)SN(d)

2

dS

S

1

1

2

Fromtheresultsin(b)and(c)itfollowsthat

cN(d)

S

1

(f)Differentiatingtheresultin(e)andusingtheresultin(c),weobtain

2c

d

1

S2N(d)S

1

1

N(d)

1

STt

Fromtheresultsind)ande)

c

t

c1

S2

2crKer(Tt)

N(d)SN(d)

rS

2S2

S2

2Tt

1

2

1

2

1

2S2N(d)

1

rSN(d)

1

STt

r[SN(d)Ker(Tt)N(d)]

1

2

rc

ThisshowsthattheBlack–Scholes–Mertonformulaforacalloptiondoesindeed

satisfytheBlack–Scholes–Mertondifferentialequation

(g)Considerwhathappensintheformulaforcinpart(d)astapproachesT.If

SK,danddtendtoinfinityandN(d)andN(d)tendto1.IfSK,

1

2

1

2

danddtendtozero.Itfollowsthattheformulaforctendstomax(SK0)

.

1

2

Problem15.18.

ShowthattheBlack–Scholes–Mertonformulasforcallandputoptionssatisfyput–callparity.

TheBlack–Scholes–MertonformulaforaEuropeancalloptionis

cSN(d)KerTN(d)

0

1

2

sothat

cKerTSN(d)KerTN(d)KerT

0

1

2

or

cKerTSN(d)KerT[1N(d)]

0

1

2

or

cKerTSN(d)KerTN(d)

0

1

2

TheBlack–Scholes–MertonformulaforaEuropeanputoptionis

pKerTN(d)SN(d)

2

0

1

sothat

pSKerTN(d)SN(d)S

0

0

2

0

1

or

pSKerTN(d)S[1N(d)]

0

2

0

1

or

pSKerTN(d)SN(d)

0

2

0

1

Thisshowsthattheput–callparityresult

cKerTpS

0

holds.

Problem15.19.

Astockpriceiscurrently$50andtherisk-freeinterestrateis5%.UsetheDerivaGem

softwaretotranslatethefollowingtableofEuropeancalloptionsonthestockintoatableof

impliedvolatilities,assumingnodividends.Aretheoptionpricesconsistentwiththe

assumptionsunderlyingBlack–Scholes–Merton?

StockPrice

Maturity=3months

Maturity=6months

Maturity=12months

45

50

55

7.00

3.50

1.60

8.30

5.20

2.90

10.50

7.50

5.10

UsingDerivaGemweobtainthefollowingtableofimpliedvolatilities

StockPrice

Maturity=3months

Maturity=6months

Maturity=12months

45

50

55

37.78

34.15

31.98

34.99

32.78

30.77

34.02

32.03

30.45

Tocalculatefirstnumber,selectequityastheUnderlyingTypeinthefirstworksheet.Select

Black-ScholesEuropeanastheOptionType.Inputstockpriceas50,therisk-freerateas5%,

timetoexerciseas0.25,andexercisepriceas45.Leavethedividendtableblankbecausewe

areassumingnodividends.Selectthebuttoncorrespondingtocall.Selecttheimplied

volatilitybutton.InputthePriceas7.0inthesecondhalfoftheoptiondatatable.Hitthe

Enterkeyandclickoncalculate.DerivaGemwillshowthevolatilityoftheoptionas37.78%.

Changethestrikepriceandtimetoexerciseandrecomputetocalculatetherestofthe

numbersinthetable.

TheoptionpricesarenotexactlyconsistentwithBlack–Scholes–Merton.Iftheywere,the

impliedvolatilitieswouldbeallthesame.Weusuallyfindinpracticethatlowstrikeprice

optionsonastockhavesignificantlyhigherimpliedvolatilitiesthanhighstrikepriceoptions

onthesamestock.ThisphenomenonisdiscussedinChapter20.

Problem15.20.

ExplaincarefullywhyBlack’sapproachtoevaluatinganAmericancalloptionona

dividend-payingstockmaygiveanapproximateanswerevenwhenonlyonedividendis

anticipated.DoestheanswergivenbyBlack’sapproachunderstateoroverstatethetrue

optionvalue?Explainyouranswer.

Black’sapproachineffectassumesthattheholderofoptionmustdecideattimezerowhether

itisaEuropeanoptionmaturingattimet(thefinalex-dividenddate)oraEuropeanoption

n

maturingattimeT.Infacttheholderoftheoptionhasmoreflexibilitythanthis.Theholder

canchoosetoexerciseattimetifthestockpriceatthattimeisabovesomelevelbutnot

n

otherwise.Furthermore,iftheoptionisnotexercisedattimet,itcanstillbeexercisedat

n

timeT.

ItappearsthatBlack’sapproachshouldunderstatethetrueoptionvalue.Thisisbecausethe

holderoftheoptionhasmorealternativestrategiesfordecidingwhentoexercisetheoption

thanthetwostrategiesimplicitlyassumedbytheapproach.Thesealternativestrategiesadd

valuetotheoption.

However,thisisnotthewholestory!ThestandardapproachtovaluingeitheranAmericanor

aEuropeanoptiononastockpayingasingledividendappliesthevolatilitytothestockprice

lessthepresentvalueofthedividend.(TheprocedureforvaluinganAmericanoptionis

explainedinChapter21.)Black’sapproachwhenconsideringexercisejustpriortothe

dividenddateappliesthevolatilitytothestockpriceitself.Black’sapproachtherefore

assumesmorestockpricevariabilitythanthestandardapproachinsomeofitscalculations.

Insomecircumstancesitcangiveahigherpricethanthestandardapproach.

Problem15.21.

ConsideranAmericancalloptiononastock.Thestockpriceis$50,thetimetomaturityis

15months,therisk-freerateofinterestis8%perannum,theexercisepriceis$55,andthe

volatilityis25%.Dividendsof$1.50areexpectedin4monthsand10months.Showthatit

canneverbeoptimaltoexercisetheoptiononeitherofthetwodividenddates.Calculatethe

priceoftheoption.

Withthenotationinthetext

DD150t03333t08333T125r008andK55

1

2

1

2

K1e

55(1e00804167)180

r(Tt)

2

Hence

Also:

DK1e

r(Tt)

2

2

K1e

55(1e00805)216

r(t2t)

1

Hence:

DK1er(t2t1)

1

ItfollowsfromtheconditionsestablishedinSection15.12thattheoptionshouldneverbe

exercisedearly.

Thepresentvalueofthedividendsis

15e0333300815e083330082864

TheoptioncanbevaluedusingtheEuropeanpricingformulawith:

S50286447136K55025r008T125

0

ln(4713655)(00802522)12500545

d

025125

1

dd02512503340

2

1

N(d)04783N(d)03692

1

2

andthecallpriceis

or$4.17.

471360478355e00812503692417

Problem15.22.

ShowthattheprobabilitythataEuropeancalloptionwillbeexercisedinarisk-neutral

worldis,withthenotationintroducedinthischapter,

N(d).Whatisanexpressionforthe

2

valueofaderivativethatpaysoff$100ifthepriceofastockattime

TisgreaterthanK?

Theprobabilitythatthecalloptionwillbeexercisedistheprobabilitythat

SKwhere

T

SisthestockpriceattimeT.Inariskneutralworld

T

lnS~lnS(r2/2)T,2T

T

0

TheprobabilitythatSKisthesameastheprobabilitythat

lnSlnK.Thisis

T

T

22)T

lnKlnS(r

1N

0

T

22)T

ln(SK)(r

N

0

T

N(d)

2

TheexpectedvalueattimeTinariskneutralworldofaderivativesecuritywhichpaysoff

$100whenSKistherefore

T

100N(d)

2

Fromriskneutralvaluationthevalueofthesecurityattimezerois

100erTN(d)

2

Problem15.23.

Usetheresultinequation(15.17)todeterminethevalueofaperpetualAmericanputoption

onanon-dividend-payingstockwithstrikepriceKifitisexercisedwhenthestockprice

equalsHwhereH<K.AssumethatthecurrentstockpriceSisgreaterthanH.Whatisthe

valueofHthatmaximizestheoptionvalue?DeducethevalueofaperpetualAmericanput

optionwithstrikepriceK.

IftheperpetualAmericanputisexercisedwhenS=H,itprovidesapayoffof(K?H).We

obtainitsvalue,bysettingQ=K?Hinequation(15.17),as

S

H

2r/2

2r/2

V(KH)(KH)

HS

Now

dVH

2

KHrH2r/21

S

2r/

2

dH

S

S

2

H

S

2r(KH)

2r/

2

1

H2

d2V2rKH2r/2

2r(KH)2rH

2r/21

1

H2S

2SS

dH2

dV/dHiszerowhen

H2

2

2rK

H2r2

and,forthisvalueofH,d2V/dH2isnegativeindicatingthatitgivesthemaximumvalueofV.

ThevalueoftheperpetualAmericanputismaximizedifitisexercisedwhenSequalsthis

valueofH.HencethevalueoftheperpetualAmericanputis

S2r/2

(KH)

H

whenH=2rK/(2r+2).Thevalueis

2KS(2r

)

2r/2

2

2r

2rK

2

ThisisconsistentwiththemoregeneralresultproducedinChapter26forthecasewherethe

stockprovidesadividendyield.

Problem15.24.

Acompanyhasanissueofexecutivestockoptionsoutstanding.Shoulddilutionbetakeninto

accountwhentheoptionsarevalued?Explainyouanswer.

Theanswerisno.Ifmarketsareefficienttheyhavealreadytakenpotentialdilutioninto

accountindeterminingthestockprice.ThisargumentisexplainedinBusinessSnapshot15.3.

Problem15.25.

Acompany’sstockpriceis$50and10millionsharesareoutstanding.Thecompanyis

consideringgivingitsemployeesthreemillionat-the-moneyfive-yearcalloptions.Option

exerciseswillbehandledbyissuingmoreshares.Thestockpricevolatilityis25%,the

five-yearrisk-freerateis5%andthecompanydoesnotpaydividends.Estimatethecostto

thecompanyoftheemployeestockoptionissue.

TheBlack-Scholes-MertonpriceoftheoptionisgivenbysettingS50,K50,

0

r005,025,andT5.Itis16.252.FromananalysissimilartothatinSection

15.10thecosttothecompanyoftheoptionsis

10

16252125

103

orabout$12.5peroption.Thetotalcostistherefore3milliontimesthisor$37.5million.If

themarketperceivesnobenefitsfromtheoptionsthestockpricewillfallby$3.75.

FurtherQuestions

Problem15.26.

Ifthevolatilityofastockis18%perannum,estimatethestandarddeviationofthe

percentagepricechangein(a)oneday,(b)oneweek,and(c)onemonth.

(a)182521.13%

(b)18522.50%

(c)18125.20%

Problem15.27.

Astockpriceiscurrently$50.Assumethattheexpectedreturnfromthestockis18%per

annumanditsvolatilityis30%perannum.Whatistheprobabilitydistributionforthestock

priceintwoyears?Calculatethemeanandstandarddeviationofthedistribution.Determine

the95%confidenceinterval.

S50,018and030.Theprobabilitydistributionofthestockprice

Inthiscase

0

intwoyears,S,islognormalandis,fromequation(15.3),givenby:

T

lnS~ln500.18

2,0.322

T

i.e.,

lnS~(4.18,0.422)

T

Themeanstockpriceisfromequation(15.4)

50e018250e0367167

andthestandarddeviationisfromequation(15.5)

50e0182e13183

0092

95%confidenceintervalsforlnSare

T

418196042and418196042

i.e.,

335and501

Thesecorrespondto95%confidencelimitsfor

Sof

T

e335ande501

i.e.,

2852and15044

Problem15.28.(Excelfile)

Supposethatobservationsonastockprice(indollars)attheendofeachof15consecutive

weeksareasfollows:

30.2,32.0,31.1,30.1,30.2,30.3,30.6,33.0,

32.9,33.0,33.5,33.5,33.7,33.5,33.2

Estimatethestockpricevolatility.Whatisthestandarderrorofyourestimate?

Thecalculationsareshowninthetablebelow

u009471

i

u2001145

i

andanestimateofstandarddeviationofweeklyreturnsis:

001145009471

2002884

13

1413

Thevolatilityperannumistherefore0028845202079or20.79%.Thestandarderror

ofthisestimateis

0207900393

214

or3.9%perannum.

Week

ClosingStockPrice

($)

PriceRelative

WeeklyReturn

SS

uln(SS)

i

i1

i

i

i1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

30.2

32.0

31.1

30.1

30.2

30.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論