




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
CHAPTER15
TheBlack-Scholes-MertonModel
PracticeQuestions
Problem15.1.
WhatdoestheBlack–Scholes–Mertonstockoptionpricingmodelassumeaboutthe
probabilitydistributionofthestockpriceinoneyear?Whatdoesitassumeaboutthe
probabilitydistributionofthecontinuouslycompoundedrateofreturnonthestockduring
theyear?
TheBlack–Scholes–Mertonoptionpricingmodelassumesthattheprobabilitydistributionof
thestockpricein1year(oratanyotherfuturetime)islognormal.Itassumesthatthe
continuouslycompoundedrateofreturnonthestockduringtheyearisnormallydistributed.
Problem15.2.
Thevolatilityofastockpriceis30%perannum.Whatisthestandarddeviationofthe
percentagepricechangeinonetradingday?
Thestandarddeviationofthepercentagepricechangeintimetistwhere
thevolatility.Inthisproblem03and,assuming252tradingdaysinoneyear,
is
t12520004
t0300040019or1.9%.
sothat
Problem15.3.
Explaintheprincipleofrisk-neutralvaluation.
Thepriceofanoptionorotherderivativewhenexpressedintermsofthepriceofthe
underlyingstockisindependentofriskpreferences.Optionsthereforehavethesamevaluein
arisk-neutralworldastheydointherealworld.Wemaythereforeassumethattheworldis
riskneutralforthepurposesofvaluingoptions.Thissimplifiestheanalysis.Inarisk-neutral
worldallsecuritieshaveanexpectedreturnequaltorisk-freeinterestrate.Also,ina
risk-neutralworld,theappropriatediscountratetouseforexpectedfuturecashflowsisthe
risk-freeinterestrate.
Problem15.4.
Calculatethepriceofathree-monthEuropeanputoptiononanon-dividend-payingstock
withastrikepriceof$50whenthecurrentstockpriceis$50,therisk-freeinterestrateis
10%perannum,andthevolatilityis30%perannum.
InthiscaseS50,K50,
r01,03,T025,and
0
dln(5050)(010092)02502417
03025
1
dd0302500917
2
1
TheEuropeanputpriceis
50N(00917)e0102550N(02417)
5004634e010255004045237
or$2.37.
Problem15.5.
WhatdifferencedoesitmaketoyourcalculationsinProblem15.4ifadividendof$1.50is
expectedintwomonths?
Inthiscasewemustsubtractthepresentvalueofthedividendfromthestockpricebefore
usingBlack–Scholes-Merton.Hencetheappropriatevalueof
Sis
0
S50150e01667014852
AsbeforeK50,r01,003,andT025.Inthiscase
dln(485250)(010092)02500414
03025
1
dd0302501086
2
1
TheEuropeanputpriceis
50N(01086)e010254852N(00414)
5005432e01025485204835303
or$3.03.
Problem15.6.
Whatisimpliedvolatility?Howcanitbecalculated?
TheimpliedvolatilityisthevolatilitythatmakestheBlack
–Scholes-Mertonpriceofan
optionequaltoitsmarketprice.Theimpliedvolatilityiscalculatedusinganiterative
procedure.Asimpleapproachisthefollowing.Supposewehavetwovolatilitiesonetoohigh
(i.e.,givinganoptionpricegreaterthanthemarketprice)andtheothertoolow(i.e.,giving
anoptionpricelowerthanthemarketprice).Bytestingthevolatilitythatishalfwaybetween
thetwo,wegetanewtoo-highvolatilityoranewtoo-lowvolatility.Ifwesearchinitiallyfor
twovolatilities,onetoohighandtheothertoolowwecanusethisprocedurerepeatedlyto
bisecttherangeandconvergeonthecorrectimpliedvolatility.Othermoresophisticated
approaches(e.g.,involvingtheNewton-Raphsonprocedure)areusedinpractice.
Problem15.7.
Astockpriceiscurrently$40.Assumethattheexpectedreturnfromthestockis15%andits
volatilityis25%.Whatistheprobabilitydistributionfortherateofreturn(withcontinuous
compounding)earnedoveratwo-yearperiod?
Inthiscase015and025.Fromequation(15.7)theprobabilitydistributionfor
therateofreturnoveratwo-yearperiodwithcontinuouscompoundingis:
0.252,0.252
0.15
2
2
i.e.,
(0.11875,0.03125)
Theexpectedvalueofthereturnis11.875%perannumandthestandarddeviationis17.7%
perannum.
Problem15.8.
AstockpricefollowsgeometricBrownianmotionwithanexpectedreturnof16%anda
volatilityof35%.Thecurrentpriceis$38.
a)WhatistheprobabilitythataEuropeancalloptiononthestockwithanexerciseprice
of$40andamaturitydateinsixmonthswillbeexercised?
b)WhatistheprobabilitythataEuropeanputoptiononthestockwiththesameexercise
priceandmaturitywillbeexercised?
a)Therequiredprobabilityistheprobabilityofthestockpricebeingabove$40insix
monthstime.SupposethatthestockpriceinsixmonthsisS
T
0.352
2
lnS~ln380.16
0.5,0.3520.5
T
i.e.,
lnS~3.687,0.2472
T
Sinceln403689,werequiretheprobabilityofln(ST)>3.689.Thisis
36893687
1N
1N(0008)
0247
SinceN(0.008)=0.5032,therequiredprobabilityis0.4968.
b)Inthiscasetherequiredprobabilityistheprobabilityofthestockpricebeinglessthan
$40insixmonthstime.Itis
10496805032
Problem15.9.
Usingthenotationinthechapter,provethata95%confidenceintervalfor
Sisbetween
T
Se
0
and
Se
0
(22)T196
T
(22)T196
T
Fromequation(15.3):
2
2
lnS~lnST,T
2
T
0
95%confidenceintervalsforlnSaretherefore
T
2
lnS()T196T
2
0
and
2
lnS()T196T
2
0
95%confidenceintervalsforSaretherefore
T
e
and
and
e
lnS0(
lnS0(
22)T196
T
T
22)T196
T
i.e.
Se
0
Se
0
(22)T196
(22)T196
T
Problem15.10.
Aportfoliomanagerannouncesthattheaverageofthereturnsrealizedineachofthelast10
yearsis20%perannum.Inwhatrespectisthisstatementmisleading?
ThisproblemrelatestothematerialinSection15.3.Thestatementismisleadinginthata
certainsumofmoney,say$1000,wheninvestedfor10yearsinthefundwouldhaverealized
areturn(withannualcompounding)oflessthan20%perannum.
Theaverageofthereturnsrealizedineachyearisalwaysgreaterthanthereturnperannum
(withannualcompounding)realizedover10years.Thefirstisanarithmeticaverageofthe
returnsineachyear;thesecondisageometricaverageofthesereturns.
Problem15.11.
Assumethatanon-dividend-payingstockhasanexpectedreturnof
andavolatilityof.
Aninnovativefinancialinstitutionhasjustannouncedthatitwilltradeaderivativethatpays
offadollaramountequaltolnSTattimeTwhereSdenotesthevaluesofthestock
T
priceattimeT.
a)Userisk-neutralvaluationtocalculatethepriceofthederivativeattimetintermof
thestockprice,S,attimet
b)Confirmthatyourpricesatisfiesthedifferentialequation(15.16)
a)Attimet,theexpectedvalueoflnSisfromequation(15.3)
T
lnS(2/2)(Tt)
Inarisk-neutralworldtheexpectedvalueof
lnS(r2/2)(Tt)
lnSTistherefore
Usingrisk-neutralvaluationthevalueofthederivativeattimetis
er(Tt)[lnS(r2/2)(Tt)]
b)If
fer(Tt)[lnS(r2/2)(Tt)]
then
ftrer(Tt)
[lnS(r2/2)(Tt)]er(Tt)r/2
2
fer(Tt)
S
S
2fer(Tt)
S2
S2
Theleft-handsideoftheBlack-Scholes-Mertondifferentialequationis
er(Tt)rlnSr(r
/2
2/2)(Tt)(r2/2)r
2
rlnSr(r
2/2)(Tt)
er(Tt)
rf
Hencethedifferentialequationissatisfied.
Problem15.12.
ConsideraderivativethatpaysoffSattimeTwhereSisthestockpriceatthattime.
n
T
T
WhenthestockpaysnodividendsanditspricefollowsgeometricBrownianmotion,itcanbe
shownthatitspriceattimet(tT)hastheform
h(tT)Sn
whereSisthestockpriceattimetandhisafunctiononlyoftandT.
(a)BysubstitutingintotheBlack–Scholes–Mertonpartialdifferentialequationderivean
ordinarydifferentialequationsatisfiedbyh(tT).
(b)Whatistheboundaryconditionforthedifferentialequationforh(tT)?
(c)Showthat
h(tT)e[052n(n1)r(n1)](Tt)
whereristherisk-freeinterestrateand
isthestockpricevolatility.
IfG(St)h(tT)SnthenGthSn,GShnSn1,and2GS2hn(n1)Sn2
t
wherehht.SubstitutingintotheBlack–Scholes–Mertondifferentialequationwe
t
obtain
hrhn12hn(n1)rh
2
t
ThederivativeisworthSnwhentT.Theboundaryconditionforthisdifferential
equationisthereforeh(TT)1
Theequation
h(tT)e[052n(n1)r(n1)](Tt)
satisfiestheboundaryconditionsinceitcollapsestoh1whentT.Itcanalsobeshown
thatitsatisfiesthedifferentialequationin(a).Alternativelywecansolvethedifferential
equationin(a)directly.Thedifferentialequationcanbewritten
h
tr(n1)12n(n1)
h
2
Thesolutiontothisis
or
lnh[r(n1)12n(n1)](Tt)
2
h(tT)e[052n(n1)r(n1)](Tt)
Problem15.13.
WhatisthepriceofaEuropeancalloptiononanon-dividend-payingstockwhenthestock
priceis$52,thestrikepriceis$50,therisk-freeinterestrateis12%perannum,thevolatility
is30%perannum,andthetimetomaturityisthreemonths?
r012,030
andT025.
InthiscaseS52,K50,
0
ln(5250)(0120322)02505365
030025
d
1
dd03002503865
2
1
ThepriceoftheEuropeancallis
52N(05365)50e012025N(03865)
520704250e00306504
506
or$5.06.
Problem15.14.
WhatisthepriceofaEuropeanputoptiononanon-dividend-payingstockwhenthestock
priceis$69,thestrikepriceis$70,therisk-freeinterestrateis5%perannum,thevolatility
is35%perannum,andthetimetomaturityissixmonths?
r005,035
andT05.
InthiscaseS69,K70,
0
ln(6970)(00503522)0501666
03505
d
1
dd0350500809
2
1
ThepriceoftheEuropeanputis
70e00505N(00809)69N(01666)
70e0025053236904338
640
or$6.40.
Problem15.15.
ConsideranAmericancalloptiononastock.Thestockpriceis$70,thetimetomaturityis
eightmonths,therisk-freerateofinterestis10%perannum,theexercisepriceis$65,and
thevolatilityis32%.Adividendof$1isexpectedafterthreemonthsandagainaftersix
months.Showthatitcanneverbeoptimaltoexercisetheoptiononeitherofthetwodividend
dates.UseDerivaGemtocalculatethepriceoftheoption.
UsingthenotationofSection15.12,DD1,K(1er(Tt2))65(1e0101667)107,
1
2
andK(1er(t2t1))65(1e01025)160.Since
DK(1er(Tt2)
)
)
1
and
DK(1er(t2t1)
2
Itisneveroptimaltoexercisethecalloptionearly.DerivaGemshowsthatthevalueofthe
optionis1094.
Problem15.16.
Acalloptiononanon-dividend-payingstockhasamarketpriceof$2.50.Thestockpriceis
$15,theexercisepriceis$13,thetimetomaturityisthreemonths,andtherisk-freeinterest
rateis5%perannum.Whatistheimpliedvolatility?
Inthecasec25,S15,
0
K13,T025,r005.Theimpliedvolatilitymustbe
calculatedusinganiterativeprocedure.
Avolatilityof0.2(or20%perannum)givesc220.Avolatilityof0.3gives
c232.A
volatilityof0.4givesc2507.Avolatilityof0.39gives
c2487.Byinterpolationthe
impliedvolatilityisabout0.396or39.6%perannum.
TheimpliedvolatilitycanalsobecalculatedusingDerivaGem.Selectequityasthe
UnderlyingTypeinthefirstworksheet.SelectBlack-ScholesEuropeanastheOptionType.
Inputstockpriceas15,therisk-freerateas5%,timetoexerciseas0.25,andexercisepriceas
13.Leavethedividendtableblankbecauseweareassumingnodividends.Selectthebutton
correspondingtocall.Selecttheimpliedvolatilitybutton.InputthePriceas2.5inthesecond
halfoftheoptiondatatable.HittheEnterkeyandclickoncalculate.DerivaGemwillshow
thevolatilityoftheoptionas39.64%.
Problem15.17.
Withthenotationusedinthischapter
(a)WhatisN(x)?
(b)ShowthatSN(d)Ker(Tt)N(d),whereSisthestockpriceattimet
1
2
ln(SK)(r22)(Tt)
d
1
Tt
ln(SK)(r22)(Tt)
d
2
Tt
(c)CalculatedSanddS.
1
2
(d)Showthatwhen
cSN(d)Ker(Tt)N(d)
1
2
c
t
rKer(Tt)N(d)SN(d)
2Tt
1
2
wherecisthepriceofacalloptiononanon-dividend-payingstock.
(e)ShowthatcSN(d).
1
(f)ShowthatthecsatisfiestheBlack–Scholes–Mertondifferentialequation.
(g)ShowthatcsatisfiestheboundaryconditionforaEuropeancalloption,i.e.,that
cmax(SK0)asttendstoT.
(a)SinceN(x)isthecumulativeprobabilitythatavariablewithastandardized
normaldistributionwillbelessthanx,N(x)istheprobabilitydensityfunctionfora
standardizednormaldistribution,thatis,
1
N(x)
e
2
x
2
2
N(d)N(d
Tt)
(b)
1
2
2(Tt)
1
2
d
1
2
exp2dTt
2
2
2
1
dTt(Tt)
2
N(d)exp
2
2
2
Because
ln(SK)(r22)(Tt)
d
2
Tt
itfollowsthat
1
Ke
r(Tt)
expdTt
2(Tt)
2
S
2
Asaresult
SN(d)Ke
1
N(d)
2
r(Tt)
whichistherequiredresult.
(c)
lnS(r2)(Tt)
d
1
K
2
Tt
lnSlnK(r2)(Tt)
2
Tt
Hence
d
1
SSTt
1
Similarly
lnSlnK(r2)(Tt)
d
2
2
Tt
and
d2
1
SSTt
Therefore:
dd
SS
1
2
(d)
cSN(d)Ke
N(d)
r(Tt)
1
2
c
d
d
SN(d)1rKe
N(d)Ke
N(d)
2
r(Tt)
r(Tt)
2
t
t
t
1
2
From(b):
Hence
SN(d)Ke
1
N(d)
2
r(Tt)
c
t
dd
12
rKe
N(d)SN(d)
tt
r(Tt
)
2
1
Since
ddTt
1
2
dd
(Tt)
1
2
ttt
2Tt
Hence
c
t
rKer(Tt)N(d)SN(d)
2Tt
1
2
(e)
FromdifferentiatingtheBlack–Scholes–Mertonformulaforacallpricewe
obtain
c
S
d
Ker(Tt)N(d)d
1
N(d)SN(d)
2
dS
S
1
1
2
Fromtheresultsin(b)and(c)itfollowsthat
cN(d)
S
1
(f)Differentiatingtheresultin(e)andusingtheresultin(c),weobtain
2c
d
1
S2N(d)S
1
1
N(d)
1
STt
Fromtheresultsind)ande)
c
t
c1
S2
2crKer(Tt)
N(d)SN(d)
rS
2S2
S2
2Tt
1
2
1
2
1
2S2N(d)
1
rSN(d)
1
STt
r[SN(d)Ker(Tt)N(d)]
1
2
rc
ThisshowsthattheBlack–Scholes–Mertonformulaforacalloptiondoesindeed
satisfytheBlack–Scholes–Mertondifferentialequation
(g)Considerwhathappensintheformulaforcinpart(d)astapproachesT.If
SK,danddtendtoinfinityandN(d)andN(d)tendto1.IfSK,
1
2
1
2
danddtendtozero.Itfollowsthattheformulaforctendstomax(SK0)
.
1
2
Problem15.18.
ShowthattheBlack–Scholes–Mertonformulasforcallandputoptionssatisfyput–callparity.
TheBlack–Scholes–MertonformulaforaEuropeancalloptionis
cSN(d)KerTN(d)
0
1
2
sothat
cKerTSN(d)KerTN(d)KerT
0
1
2
or
cKerTSN(d)KerT[1N(d)]
0
1
2
or
cKerTSN(d)KerTN(d)
0
1
2
TheBlack–Scholes–MertonformulaforaEuropeanputoptionis
pKerTN(d)SN(d)
2
0
1
sothat
pSKerTN(d)SN(d)S
0
0
2
0
1
or
pSKerTN(d)S[1N(d)]
0
2
0
1
or
pSKerTN(d)SN(d)
0
2
0
1
Thisshowsthattheput–callparityresult
cKerTpS
0
holds.
Problem15.19.
Astockpriceiscurrently$50andtherisk-freeinterestrateis5%.UsetheDerivaGem
softwaretotranslatethefollowingtableofEuropeancalloptionsonthestockintoatableof
impliedvolatilities,assumingnodividends.Aretheoptionpricesconsistentwiththe
assumptionsunderlyingBlack–Scholes–Merton?
StockPrice
Maturity=3months
Maturity=6months
Maturity=12months
45
50
55
7.00
3.50
1.60
8.30
5.20
2.90
10.50
7.50
5.10
UsingDerivaGemweobtainthefollowingtableofimpliedvolatilities
StockPrice
Maturity=3months
Maturity=6months
Maturity=12months
45
50
55
37.78
34.15
31.98
34.99
32.78
30.77
34.02
32.03
30.45
Tocalculatefirstnumber,selectequityastheUnderlyingTypeinthefirstworksheet.Select
Black-ScholesEuropeanastheOptionType.Inputstockpriceas50,therisk-freerateas5%,
timetoexerciseas0.25,andexercisepriceas45.Leavethedividendtableblankbecausewe
areassumingnodividends.Selectthebuttoncorrespondingtocall.Selecttheimplied
volatilitybutton.InputthePriceas7.0inthesecondhalfoftheoptiondatatable.Hitthe
Enterkeyandclickoncalculate.DerivaGemwillshowthevolatilityoftheoptionas37.78%.
Changethestrikepriceandtimetoexerciseandrecomputetocalculatetherestofthe
numbersinthetable.
TheoptionpricesarenotexactlyconsistentwithBlack–Scholes–Merton.Iftheywere,the
impliedvolatilitieswouldbeallthesame.Weusuallyfindinpracticethatlowstrikeprice
optionsonastockhavesignificantlyhigherimpliedvolatilitiesthanhighstrikepriceoptions
onthesamestock.ThisphenomenonisdiscussedinChapter20.
Problem15.20.
ExplaincarefullywhyBlack’sapproachtoevaluatinganAmericancalloptionona
dividend-payingstockmaygiveanapproximateanswerevenwhenonlyonedividendis
anticipated.DoestheanswergivenbyBlack’sapproachunderstateoroverstatethetrue
optionvalue?Explainyouranswer.
Black’sapproachineffectassumesthattheholderofoptionmustdecideattimezerowhether
itisaEuropeanoptionmaturingattimet(thefinalex-dividenddate)oraEuropeanoption
n
maturingattimeT.Infacttheholderoftheoptionhasmoreflexibilitythanthis.Theholder
canchoosetoexerciseattimetifthestockpriceatthattimeisabovesomelevelbutnot
n
otherwise.Furthermore,iftheoptionisnotexercisedattimet,itcanstillbeexercisedat
n
timeT.
ItappearsthatBlack’sapproachshouldunderstatethetrueoptionvalue.Thisisbecausethe
holderoftheoptionhasmorealternativestrategiesfordecidingwhentoexercisetheoption
thanthetwostrategiesimplicitlyassumedbytheapproach.Thesealternativestrategiesadd
valuetotheoption.
However,thisisnotthewholestory!ThestandardapproachtovaluingeitheranAmericanor
aEuropeanoptiononastockpayingasingledividendappliesthevolatilitytothestockprice
lessthepresentvalueofthedividend.(TheprocedureforvaluinganAmericanoptionis
explainedinChapter21.)Black’sapproachwhenconsideringexercisejustpriortothe
dividenddateappliesthevolatilitytothestockpriceitself.Black’sapproachtherefore
assumesmorestockpricevariabilitythanthestandardapproachinsomeofitscalculations.
Insomecircumstancesitcangiveahigherpricethanthestandardapproach.
Problem15.21.
ConsideranAmericancalloptiononastock.Thestockpriceis$50,thetimetomaturityis
15months,therisk-freerateofinterestis8%perannum,theexercisepriceis$55,andthe
volatilityis25%.Dividendsof$1.50areexpectedin4monthsand10months.Showthatit
canneverbeoptimaltoexercisetheoptiononeitherofthetwodividenddates.Calculatethe
priceoftheoption.
Withthenotationinthetext
DD150t03333t08333T125r008andK55
1
2
1
2
K1e
55(1e00804167)180
r(Tt)
2
Hence
Also:
DK1e
r(Tt)
2
2
K1e
55(1e00805)216
r(t2t)
1
Hence:
DK1er(t2t1)
1
ItfollowsfromtheconditionsestablishedinSection15.12thattheoptionshouldneverbe
exercisedearly.
Thepresentvalueofthedividendsis
15e0333300815e083330082864
TheoptioncanbevaluedusingtheEuropeanpricingformulawith:
S50286447136K55025r008T125
0
ln(4713655)(00802522)12500545
d
025125
1
dd02512503340
2
1
N(d)04783N(d)03692
1
2
andthecallpriceis
or$4.17.
471360478355e00812503692417
Problem15.22.
ShowthattheprobabilitythataEuropeancalloptionwillbeexercisedinarisk-neutral
worldis,withthenotationintroducedinthischapter,
N(d).Whatisanexpressionforthe
2
valueofaderivativethatpaysoff$100ifthepriceofastockattime
TisgreaterthanK?
Theprobabilitythatthecalloptionwillbeexercisedistheprobabilitythat
SKwhere
T
SisthestockpriceattimeT.Inariskneutralworld
T
lnS~lnS(r2/2)T,2T
T
0
TheprobabilitythatSKisthesameastheprobabilitythat
lnSlnK.Thisis
T
T
22)T
lnKlnS(r
1N
0
T
22)T
ln(SK)(r
N
0
T
N(d)
2
TheexpectedvalueattimeTinariskneutralworldofaderivativesecuritywhichpaysoff
$100whenSKistherefore
T
100N(d)
2
Fromriskneutralvaluationthevalueofthesecurityattimezerois
100erTN(d)
2
Problem15.23.
Usetheresultinequation(15.17)todeterminethevalueofaperpetualAmericanputoption
onanon-dividend-payingstockwithstrikepriceKifitisexercisedwhenthestockprice
equalsHwhereH<K.AssumethatthecurrentstockpriceSisgreaterthanH.Whatisthe
valueofHthatmaximizestheoptionvalue?DeducethevalueofaperpetualAmericanput
optionwithstrikepriceK.
IftheperpetualAmericanputisexercisedwhenS=H,itprovidesapayoffof(K?H).We
obtainitsvalue,bysettingQ=K?Hinequation(15.17),as
S
H
2r/2
2r/2
V(KH)(KH)
HS
Now
dVH
2
KHrH2r/21
S
2r/
2
dH
S
S
2
H
S
2r(KH)
2r/
2
1
H2
d2V2rKH2r/2
2r(KH)2rH
2r/21
1
H2S
2SS
dH2
dV/dHiszerowhen
H2
2
2rK
H2r2
and,forthisvalueofH,d2V/dH2isnegativeindicatingthatitgivesthemaximumvalueofV.
ThevalueoftheperpetualAmericanputismaximizedifitisexercisedwhenSequalsthis
valueofH.HencethevalueoftheperpetualAmericanputis
S2r/2
(KH)
H
whenH=2rK/(2r+2).Thevalueis
2KS(2r
)
2r/2
2
2r
2rK
2
ThisisconsistentwiththemoregeneralresultproducedinChapter26forthecasewherethe
stockprovidesadividendyield.
Problem15.24.
Acompanyhasanissueofexecutivestockoptionsoutstanding.Shoulddilutionbetakeninto
accountwhentheoptionsarevalued?Explainyouanswer.
Theanswerisno.Ifmarketsareefficienttheyhavealreadytakenpotentialdilutioninto
accountindeterminingthestockprice.ThisargumentisexplainedinBusinessSnapshot15.3.
Problem15.25.
Acompany’sstockpriceis$50and10millionsharesareoutstanding.Thecompanyis
consideringgivingitsemployeesthreemillionat-the-moneyfive-yearcalloptions.Option
exerciseswillbehandledbyissuingmoreshares.Thestockpricevolatilityis25%,the
five-yearrisk-freerateis5%andthecompanydoesnotpaydividends.Estimatethecostto
thecompanyoftheemployeestockoptionissue.
TheBlack-Scholes-MertonpriceoftheoptionisgivenbysettingS50,K50,
0
r005,025,andT5.Itis16.252.FromananalysissimilartothatinSection
15.10thecosttothecompanyoftheoptionsis
10
16252125
103
orabout$12.5peroption.Thetotalcostistherefore3milliontimesthisor$37.5million.If
themarketperceivesnobenefitsfromtheoptionsthestockpricewillfallby$3.75.
FurtherQuestions
Problem15.26.
Ifthevolatilityofastockis18%perannum,estimatethestandarddeviationofthe
percentagepricechangein(a)oneday,(b)oneweek,and(c)onemonth.
(a)182521.13%
(b)18522.50%
(c)18125.20%
Problem15.27.
Astockpriceiscurrently$50.Assumethattheexpectedreturnfromthestockis18%per
annumanditsvolatilityis30%perannum.Whatistheprobabilitydistributionforthestock
priceintwoyears?Calculatethemeanandstandarddeviationofthedistribution.Determine
the95%confidenceinterval.
S50,018and030.Theprobabilitydistributionofthestockprice
Inthiscase
0
intwoyears,S,islognormalandis,fromequation(15.3),givenby:
T
lnS~ln500.18
2,0.322
T
i.e.,
lnS~(4.18,0.422)
T
Themeanstockpriceisfromequation(15.4)
50e018250e0367167
andthestandarddeviationisfromequation(15.5)
50e0182e13183
0092
95%confidenceintervalsforlnSare
T
418196042and418196042
i.e.,
335and501
Thesecorrespondto95%confidencelimitsfor
Sof
T
e335ande501
i.e.,
2852and15044
Problem15.28.(Excelfile)
Supposethatobservationsonastockprice(indollars)attheendofeachof15consecutive
weeksareasfollows:
30.2,32.0,31.1,30.1,30.2,30.3,30.6,33.0,
32.9,33.0,33.5,33.5,33.7,33.5,33.2
Estimatethestockpricevolatility.Whatisthestandarderrorofyourestimate?
Thecalculationsareshowninthetablebelow
u009471
i
u2001145
i
andanestimateofstandarddeviationofweeklyreturnsis:
001145009471
2002884
13
1413
Thevolatilityperannumistherefore0028845202079or20.79%.Thestandarderror
ofthisestimateis
0207900393
214
or3.9%perannum.
Week
ClosingStockPrice
($)
PriceRelative
WeeklyReturn
SS
uln(SS)
i
i1
i
i
i1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
30.2
32.0
31.1
30.1
30.2
30.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《機械加工實訓教程》課件 模塊四(刨削與拉削加工實訓)的項目1(銑等件)項目2(鍵槽)
- 八年級物理下冊專題11大氣壓及流體壓強與流速關系問題(解析版)
- 信陽市重點中學2025年高一化學第二學期期末教學質量檢測模擬試題含解析
- 2025屆浙江省稽陽聯誼學校高三下學期4月二模政治試題
- 山東居然之家活動方案
- 布置鮮花活動方案
- 巨野化工園區活動方案
- 工人聚會音樂活動方案
- 市集售賣活動方案
- 小學端午節教學活動方案
- 2023-2024學年山東青島膠州市高一物理第二學期期末監測試題含解析
- 中藥藥劑學智慧樹知到期末考試答案章節答案2024年湖南中醫藥大學
- 電纜橋架技術規范
- 初中英語《反義疑問句》優質課件
- 《風電場工程規劃報告編制規程》(NB-T 31098-2016)
- 中國產科麻醉專家共識(2021版)-共識解讀
- 高血糖高滲狀態
- 病毒性肝炎患者的護理查房
- 農田水利學專業課程設計
- 三門問題分析報告
- 醫療機構污水管理培訓護理課件
評論
0/150
提交評論