2022年全國新高考I卷數學真題及答案_第1頁
2022年全國新高考I卷數學真題及答案_第2頁
2022年全國新高考I卷數學真題及答案_第3頁
免費預覽已結束,剩余24頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

》》》》》》歷年考試真題——2023年最新整理《《《《《《》》》》》》歷年考試真題——2023年最新整理《《《《《《》》》》》》歷年考試真題——2023年最新整理《《《《《《2022年全國新高考I卷數學真題及答案試卷類型:A2022年普通高等學校招生全國統一考試數學本試卷共4頁,22小題,滿分150分.考試用時120分鐘.注意事項:1.答卷前,考生務必用黑色字跡鋼筆或簽字筆將自己的姓名、考生號、考場號和座位號填寫在答題卡上.用2B鉛筆將試卷類型(A)填涂在答題卡相應位置上.將條形碼橫貼在答題卡右上角“條形碼粘貼處”.2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案,答案不能答在試卷上.3.非選擇題必須用黑色字跡鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用鉛筆和涂改液.不按以上要求作答的答案無效.4.考生必須保持答題卡的整潔.考試結束后,將試卷和答題卡一并交回.一、選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.1.若集合,則()A. B. C. D.2.若,則()A. B. C.1 D.23.在中,點D在邊AB上,.記,則()A. B. C. D.4.南水北調工程緩解了北方一些地區水資源短缺問題,其中一部分水蓄入某水庫.已知該水庫水位為海拔時,相應水面的面積為;水位為海拔時,相應水面的面積為,將該水庫在這兩個水位間的形狀看作一個棱臺,則該水庫水位從海拔上升到時,增加的水量約為()()A. B. C. D.5.從2至8的7個整數中隨機取2個不同的數,則這2個數互質的概率為()A. B. C. D.6.記函數最小正周期為T.若,且的圖象關于點中心對稱,則()A.1 B. C. D.37.設,則()A. B. C. D.8.已知正四棱錐的側棱長為l,其各頂點都在同一球面上.若該球的體積為,且,則該正四棱錐體積的取值范圍是()A B. C. D.二、選擇題:本題共4小題,每小題5分,共20分.在每小題給出的選項中,有多項符合題目要求.全部選對的得5分,部分選對的得2分,有選錯的得0分.9.已知正方體,則()A.直線與所成的角為 B.直線與所成的角為C.直線與平面所成角為 D.直線與平面ABCD所成的角為10.已知函數,則()A有兩個極值點 B.有三個零點C.點是曲線的對稱中心 D.直線是曲線的切線11.已知O為坐標原點,點在拋物線上,過點的直線交C于P,Q兩點,則()A.C的準線為 B.直線AB與C相切C. D.12.已知函數及其導函數的定義域均為,記,若,均為偶函數,則()A. B. C. D.三、填空題:本題共4小題,每小題5分,共20分.13.的展開式中的系數為________________(用數字作答).14.寫出與圓和都相切的一條直線的方程________________.15.若曲線有兩條過坐標原點的切線,則a的取值范圍是________________.16.已知橢圓,C的上頂點為A,兩個焦點為,,離心率為.過且垂直于的直線與C交于D,E兩點,,則的周長是________________.四、解答題:本題共6小題,共70分.解答應寫出文字說明、證明過程或演算步驟.17.記為數列的前n項和,已知是公差為的等差數列.(1)求的通項公式;(2)證明:.18.記的內角A,B,C的對邊分別為a,b,c,已知.(1)若,求B;(2)求的最小值.19.如圖,直三棱柱的體積為4,的面積為.

(1)求A到平面的距離;(2)設D為的中點,,平面平面,求二面角的正弦值.20.一醫療團隊為研究某地的一種地方性疾病與當地居民的衛生習慣(衛生習慣分為良好和不夠良好兩類)的關系,在已患該疾病的病例中隨機調查了100例(稱為病例組),同時在未患該疾病的人群中隨機調查了100人(稱為對照組),得到如下數據:不夠良好良好病例組4060對照組1090(1)能否有99%的把握認為患該疾病群體與未患該疾病群體的衛生習慣有差異?(2)從該地的人群中任選一人,A表示事件“選到的人衛生習慣不夠良好”,B表示事件“選到的人患有該疾病”.與的比值是衛生習慣不夠良好對患該疾病風險程度的一項度量指標,記該指標為R.(ⅰ)證明:;(ⅱ)利用該調查數據,給出的估計值,并利用(ⅰ)的結果給出R的估計值.附,00500.0100.001k3.8416.63510.82821.已知點在雙曲線上,直線l交C于P,Q兩點,直線的斜率之和為0.(1)求l的斜率;(2)若,求的面積.22.已知函數和有相同的最小值.(1)求a;(2)證明:存在直線,其與兩條曲線和共有三個不同的交點,并且從左到右的三個交點的橫坐標成等差數列.

參考答案一、選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.1.若集合,則()A. B. C. D.【答案】D【解析】【分析】求出集合后可求.詳解】,故,故選:D2.若,則()A. B. C.1 D.2【答案】D【解析】【分析】利用復數的除法可求,從而可求.【詳解】由題設有,故,故,故選:D3.在中,點D在邊AB上,.記,則()A. B. C. D.【答案】B【解析】【分析】根據幾何條件以及平面向量的線性運算即可解出.【詳解】因為點D在邊AB上,,所以,即,所以.故選:B.4.南水北調工程緩解了北方一些地區水資源短缺問題,其中一部分水蓄入某水庫.已知該水庫水位為海拔時,相應水面的面積為;水位為海拔時,相應水面的面積為,將該水庫在這兩個水位間的形狀看作一個棱臺,則該水庫水位從海拔上升到時,增加的水量約為()()A. B. C. D.【答案】C【解析】【分析】根據題意只要求出棱臺的高,即可利用棱臺的體積公式求出.【詳解】依題意可知棱臺的高為(m),所以增加的水量即為棱臺的體積.棱臺上底面積,下底面積,∴.故選:C.5.從2至8的7個整數中隨機取2個不同的數,則這2個數互質的概率為()A. B. C. D.【答案】D【解析】【分析】由古典概型概率公式結合組合、列舉法即可得解.【詳解】從2至8的7個整數中隨機取2個不同的數,共有種不同的取法,若兩數不互質,不同的取法有:,共7種,故所求概率.故選:D.6.記函數的最小正周期為T.若,且的圖象關于點中心對稱,則()A.1 B. C. D.3【答案】A【解析】【分析】由三角函數的圖象與性質可求得參數,進而可得函數解析式,代入即可得解.【詳解】由函數的最小正周期T滿足,得,解得,又因為函數圖象關于點對稱,所以,且,所以,所以,,所以.故選:A7.設,則()A. B. C. D.【答案】C【解析】【分析】構造函數,導數判斷其單調性,由此確定大小.【詳解】設,因為,當時,,當時,所以函數在單調遞減,在上單調遞增,所以,所以,故,即,所以,所以,故,所以,故,設,則,令,,當時,,函數單調遞減,當時,,函數單調遞增,又,所以當時,,所以當時,,函數單調遞增,所以,即,所以故選:C.8.已知正四棱錐的側棱長為l,其各頂點都在同一球面上.若該球的體積為,且,則該正四棱錐體積的取值范圍是()A. B. C. D.【答案】C【解析】【分析】設正四棱錐的高為,由球的截面性質列方程求出正四棱錐的底面邊長與高的關系,由此確定正四棱錐體積的取值范圍.【詳解】∵球的體積為,所以球的半徑,設正四棱錐的底面邊長為,高為,則,,所以,所以正四棱錐的體積,所以,當時,,當時,,所以當時,正四棱錐的體積取最大值,最大值為,又時,,時,,所以正四棱錐的體積的最小值為,所以該正四棱錐體積的取值范圍是.故選:C.二、選擇題:本題共4小題,每小題5分,共20分.在每小題給出的選項中,有多項符合題目要求.全部選對的得5分,部分選對的得2分,有選錯的得0分.9.已知正方體,則()A.直線與所成的角為 B.直線與所成的角為C.直線與平面所成的角為 D.直線與平面ABCD所成的角為【答案】ABD【解析】【分析】數形結合,依次對所給選項進行判斷即可.【詳解】如圖,連接、,因為,所以直線與所成的角即為直線與所成的角,因為四邊形為正方形,則,故直線與所成的角為,A正確;連接,因為平面,平面,則,因為,,所以平面,又平面,所以,故B正確;連接,設,連接,因為平面,平面,則,因為,,所以平面,所以為直線與平面所成的角,設正方體棱長為,則,,,所以,直線與平面所成的角為,故C錯誤;因為平面,所以為直線與平面所成的角,易得,故D正確.故選:ABD10.已知函數,則()A.有兩個極值點 B.有三個零點C.點是曲線的對稱中心 D.直線是曲線的切線【答案】AC【解析】【分析】利用極值點的定義可判斷A,結合的單調性、極值可判斷B,利用平移可判斷C;利用導數的幾何意義判斷D.【詳解】由題,,令得或,令得,所以在上單調遞減,在,上單調遞增,所以是極值點,故A正確;因,,,所以,函數在上有一個零點,當時,,即函數在上無零點,綜上所述,函數有一個零點,故B錯誤;令,該函數的定義域為,,則是奇函數,是的對稱中心,將的圖象向上移動一個單位得到的圖象,所以點是曲線的對稱中心,故C正確;令,可得,又,當切點為時,切線方程為,當切點為時,切線方程為,故D錯誤.故選:AC11.已知O為坐標原點,點在拋物線上,過點的直線交C于P,Q兩點,則()A.C的準線為 B.直線AB與C相切C. D.【答案】BCD【解析】【分析】求出拋物線方程可判斷A,聯立AB與拋物線的方程求交點可判斷B,利用距離公式及弦長公式可判斷C、D.【詳解】將點的代入拋物線方程得,所以拋物線方程為,故準線方程為,A錯誤;,所以直線的方程為,聯立,可得,解得,故B正確;設過的直線為,若直線與軸重合,則直線與拋物線只有一個交點,所以,直線的斜率存在,設其方程為,,聯立,得,所以,所以或,,又,,所以,故C正確;因為,,所以,而,故D正確.故選:BCD12.已知函數及其導函數的定義域均為,記,若,均為偶函數,則()A. B. C. D.【答案】BC【解析】【分析】轉化題設條件為函數的對稱性,結合原函數與導函數圖象的關系,根據函數的性質逐項判斷即可得解.【詳解】因為,均為偶函數,所以即,,所以,,則,故C正確;函數,的圖象分別關于直線對稱,又,且函數可導,所以,所以,所以,所以,,故B正確,D錯誤;若函數滿足題設條件,則函數(C為常數)也滿足題設條件,所以無法確定的函數值,故A錯誤.故選:BC.三、填空題:本題共4小題,每小題5分,共20分.13.的展開式中的系數為________________(用數字作答).【答案】-28【解析】【分析】可化為,結合二項式展開式的通項公式求解.【詳解】因為,所以的展開式中含的項為,的展開式中的系數為-28故答案為:-2814.寫出與圓和都相切的一條直線的方程________________.【答案】或或【解析】【分析】先判斷兩圓位置關系,分情況討論即可.【詳解】圓的圓心為,半徑為,圓的圓心為,半徑為,兩圓圓心距為,等于兩圓半徑之和,故兩圓外切,如圖,當切線為l時,因為,所以,設方程為O到l的距離,解得,所以l的方程為,當切線為m時,設直線方程為,其中,,由題意,解得,當切線為n時,易知切線方程為,故答案為:或或.

15.若曲線有兩條過坐標原點的切線,則a的取值范圍是________________.【答案】【解析】【分析】設出切點橫坐標,利用導數的幾何意義求得切線方程,根據切線經過原點得到關于的方程,根據此方程應有兩個不同的實數根,求得的取值范圍.【詳解】∵,∴,設切點為,則,切線斜率,切線方程為:,∵切線過原點,∴,整理得:,∵切線有兩條,∴,解得或,∴的取值范圍是,故答案為:16.已知橢圓,C的上頂點為A,兩個焦點為,,離心率為.過且垂直于的直線與C交于D,E兩點,,則的周長是________________.【答案】13【解析】【分析】利用離心率得到橢圓的方程為,根據離心率得到直線的斜率,進而利用直線的垂直關系得到直線的斜率,寫出直線的方程:,代入橢圓方程,整理化簡得到:,利用弦長公式求得,得,根據對稱性將的周長轉化為的周長,利用橢圓的定義得到周長為.【詳解】∵橢圓的離心率為,∴,∴,∴橢圓的方程為,不妨設左焦點為,右焦點為,如圖所示,∵,∴,∴為正三角形,∵過且垂直于的直線與C交于D,E兩點,為線段的垂直平分線,∴直線的斜率為,斜率倒數為,直線的方程:,代入橢圓方程,整理化簡得到:,判別式,∴,∴,得,∵為線段的垂直平分線,根據對稱性,,∴的周長等于的周長,利用橢圓的定義得到周長為.故答案為:13.四、解答題:本題共6小題,共70分.解答應寫出文字說明、證明過程或演算步驟.17.記為數列的前n項和,已知是公差為的等差數列.(1)求的通項公式;(2)證明:.【答案】(1)(2)見解析【解析】【分析】(1)利用等差數列的通項公式求得,得到,利用和與項的關系得到當時,,進而得:,利用累乘法求得,檢驗對于也成立,得到的通項公式;(2)由(1)的結論,利用裂項求和法得到,進而證得.【小問1詳解】∵,∴,∴,又∵是公差為的等差數列,∴,∴,∴當時,,∴,整理得:,即,∴,顯然對于也成立,∴的通項公式;【小問2詳解】∴18.記的內角A,B,C的對邊分別為a,b,c,已知.(1)若,求B;(2)求的最小值.【答案】(1);(2).【解析】【分析】(1)根據二倍角公式以及兩角差的余弦公式可將化成,再結合,即可求出;(2)由(1)知,,,再利用正弦定理以及二倍角公式將化成,然后利用基本不等式即可解出.【小問1詳解】因為,即,而,所以;【小問2詳解】由(1)知,,所以,而,所以,即有.所以.當且僅當時取等號,所以的最小值為.19.如圖,直三棱柱的體積為4,的面積為.

(1)求A到平面的距離;(2)設D為的中點,,平面平面,求二面角的正弦值.【答案】(1)(2)【解析】【分析】(1)由等體積法運算即可得解;(2)由面面垂直的性質及判定可得平面,建立空間直角坐標系,利用空間向量法即可得解.【小問1詳解】在直三棱柱中,設點A到平面的距離為h,則,解得,所以點A到平面的距離為;【小問2詳解】取的中點E,連接AE,如圖,因為,所以,又平面平面,平面平面,且平面,所以平面,在直三棱柱中,平面,由平面,平面可得,,又平面且相交,所以平面,所以兩兩垂直,以B為原點,建立空間直角坐標系,如圖,由(1)得,所以,,所以,則,所以的中點,則,,設平面的一個法向量,則,可取,設平面的一個法向量,則,可取,則,所以二面角的正弦值為.20.一醫療團隊為研究某地的一種地方性疾病與當地居民的衛生習慣(衛生習慣分為良好和不夠良好兩類)的關系,在已患該疾病的病例中隨機調查了100例(稱為病例組),同時在未患該疾病的人群中隨機調查了100人(稱為對照組),得到如下數據:不夠良好良好病例組4060對照組1090(1)能否有99%的把握認為患該疾病群體與未患該疾病群體的衛生習慣有差異?(2)從該地的人群中任選一人,A表示事件“選到的人衛生習慣不夠良好”,B表示事件“選到的人患有該疾病”.與的比值是衛生習慣不夠良好對患該疾病風險程度的一項度量指標,記該指標為R.(ⅰ)證明:;(ⅱ)利用該調查數據,給出的估計值,并利用(ⅰ)的結果給出R的估計值.附,0.0500.0100.001k3.8416.63510.828【答案】(1)答案見解析(2)(i)證明見解析;(ii);【解析】【分析】(1)由所給數據結合公式求出的值,將其與臨界值比較大小,由此確定是否有99%的把握認為患該疾病群體與未黃該疾病群體的衛生習慣有差異;(2)(i)根據定義結合條件概率公式即可完成證明;(ii)根據(i)結合已知數據求.【小問1詳解】由已知,又,,所以有99%的把握認為患該疾病群體與未患該疾病群體的衛生習慣有差異.【小問2詳解】(i)因為,所以所以,(ii)由已知,,又,,所以21.已知點在雙曲線上,直線l交C于P,Q兩點,直線的斜率之和為0.(1)求l的斜率;(2)若,求的面積.【答案】(1);(2).【解析】【分析】(1)由點在雙曲線上可求出,易知直線l的斜率存在,設,,再根據,即可解出l的斜率;(2)根據直線的斜率之和為0可知直線的傾斜角互補,再根據即可求出直線的斜率,再分別聯立直線與雙曲線方程求出點的坐標,即可得到直線的方程以及的長,由點到直線的距離公式求出點到直線的距離,即可得出的面積.【小問1詳解】因為點在雙曲線上,所以,解得,即雙曲線易知直線l的斜率存在,設,,聯立可得,,所以,,.所以由可得,,即,即,所以,化簡得,,即,所以或,當時,直線過點,與題意不符,舍去,故.【小問2詳解】不妨設直線的傾斜角為,因為,所以,因為,所以,即,即,解得,于是,直線,直線,聯立可得,,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論