




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,等腰△ABC的底邊BC與底邊上的高AD相等,高AD在數軸上,其中點A,D分別對應數軸上的實數﹣2,2,則AC的長度為()A.2 B.4 C.2 D.42.若關于x的一元二次方程(m-1)x2+x+m2-5m+3=0有一個根為1,則m的值為A.1 B.3 C.0 D.1或33.如圖,直線a、b被c所截,若a∥b,∠1=45°,∠2=65°,則∠3的度數為()A.110° B.115° C.120° D.130°4.若代數式的值為零,則實數x的值為()A.x=0 B.x≠0 C.x=3 D.x≠35.如圖,正方形ABCD的邊長是3,BP=CQ,連接AQ,DP交于點O,并分別與邊CD,BC交于點F,E,連接AE,下列結論:①AQ⊥DP;②OA2=OE?OP;③S△AOD=S四邊形OECF;④當BP=1時,tan∠OAE=,其中正確結論的個數是(
)A.1 B.2 C.3 D.46.如圖,在正方形ABCD和正方形CEFG中,點D在CG上,BC=1,CE=3,連接AF交CG于M點,則FM=()A. B. C. D.7.tan30°的值為()A.12 B.32 C.38.如圖,在△ABC中,∠C=90°,∠B=10°,以A為圓心,任意長為半徑畫弧交AB于M、AC于N,再分別以M、N為圓心,大于12MN的長為半徑畫弧,兩弧交于點P,連接AP并延長交BC于D①AD是∠BAC的平分線;②∠ADC=60°;③點D在AB的中垂線上;④S△ACD:S△ACB=1:1.其中正確的有()A.只有①②③ B.只有①②④ C.只有①③④ D.①②③④9.下列圖形是軸對稱圖形的有()A.2個 B.3個 C.4個 D.5個10.要使式子有意義,的取值范圍是()A. B.且 C..或 D.且二、填空題(共7小題,每小題3分,滿分21分)11.閱讀下面材料:在數學課上,老師提出如下問題:小亮的作法如下:老師說:“小亮的作法正確”請回答:小亮的作圖依據是______.12.拋物線y=﹣x2+4x﹣1的頂點坐標為.13.王經理到襄陽出差帶回襄陽特產——孔明菜若干袋,分給朋友們品嘗.如果每人分5袋,還余3袋;如果每人分6袋,還差3袋,則王經理帶回孔明菜_________袋14.如圖,AD為△ABC的外接圓⊙O的直徑,若∠BAD=50°,則∠ACB=__________°.15.圖1是我國古代建筑中的一種窗格,其中冰裂紋圖案象征著堅冰出現裂紋并開始消溶,形狀無一定規則,代表一種自然和諧美.圖2是從圖1冰裂紋窗格圖案中提取的由五條線段組成的圖形,則∠1+∠2+∠3+∠4+∠5=度.16.分式方程的解為x=_____.17.如圖,已知拋物線與坐標軸分別交于A,B,C三點,在拋物線上找到一點D,使得∠DCB=∠ACO,則D點坐標為____________________.三、解答題(共7小題,滿分69分)18.(10分)如圖,AB是⊙O的直徑,點E是上的一點,∠DBC=∠BED.求證:BC是⊙O的切線;已知AD=3,CD=2,求BC的長.19.(5分)如圖,點P是菱形ABCD的對角線BD上一點,連接CP并延長,交AD于E,交BA的延長線點F.問:圖中△APD與哪個三角形全等?并說明理由;求證:△APE∽△FPA;猜想:線段PC,PE,PF之間存在什么關系?并說明理由.20.(8分)根據圖中給出的信息,解答下列問題:放入一個小球水面升高,,放入一個大球水面升高;如果要使水面上升到50,應放入大球、小球各多少個?21.(10分)武漢市某中學的一個數學興趣小組在本校學生中開展主題為“垃圾分類知多少”的專題調查活動,采取隨機抽樣的方式進行問卷調查,問卷詞查的結果分為“非常了解“、“比較了解”、“只聽說過”,“不了解”四個等級,劃分等級后的數據整理如下表:等級非常了解比較了解只聽說過不了解頻數40120364頻率0.2m0.180.02(1)本次問卷調查取樣的樣本容量為,表中的m值為;(2)在扇形圖中完善數據,寫出等級及其百分比;根據表中的數據計算等級為“非常了解”的頻數在扇形統計圖所對應的扇形的圓心角的度數;(3)若該校有學生1500人,請根據調查結果估計這些學生中“比較了解”垃圾分類知識的人數約為多少?22.(10分)如圖,平行四邊形ABCD的對角線AC,BD相交于點O,EF過點O且與AB、CD分別交于點E、F.求證:OE=OF.23.(12分)已知,關于x的一元二次方程(k﹣1)x2+x+3=0有實數根,求k的取值范圍.24.(14分)某工程隊承擔了修建長30米地下通道的任務,由于工作需要,實際施工時每周比原計劃多修1米,結果比原計劃提前1周完成.求該工程隊原計劃每周修建多少米?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
根據等腰三角形的性質和勾股定理解答即可.【詳解】解:∵點A,D分別對應數軸上的實數﹣2,2,∴AD=4,∵等腰△ABC的底邊BC與底邊上的高AD相等,∴BC=4,∴CD=2,在Rt△ACD中,AC=,故選:C.【點睛】此題考查等腰三角形的性質,注意等腰三角形的三線合一,熟練運用勾股定理.2、B【解析】
直接把x=1代入已知方程即可得到關于m的方程,解方程即可求出m的值.【詳解】∵x=1是方程(m﹣1)x2+x+m2﹣5m+3=0的一個根,∴(m﹣1)+1+m2﹣5m+3=0,∴m2﹣4m+3=0,∴m=1或m=3,但當m=1時方程的二次項系數為0,∴m=3.故答案選B.【點睛】本題考查了一元二次方程的解,解題的關鍵是熟練的掌握一元二次方程的運算.3、A【解析】試題分析:首先根據三角形的外角性質得到∠1+∠2=∠4,然后根據平行線的性質得到∠3=∠4求解.解:根據三角形的外角性質,∴∠1+∠2=∠4=110°,∵a∥b,∴∠3=∠4=110°,故選A.點評:本題考查了平行線的性質以及三角形的外角性質,屬于基礎題,難度較?。?、A【解析】
根據分子為零,且分母不為零解答即可.【詳解】解:∵代數式的值為零,∴x=0,此時分母x-3≠0,符合題意.故選A.【點睛】本題考查了分式的值為零的條件.若分式的值為零,需同時具備兩個條件:①分子的值為0,②分母的值不為0,這兩個條件缺一不可.5、C【解析】∵四邊形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∵BP=CQ,∴AP=BQ,在△DAP與△ABQ中,,∴△DAP≌△ABQ,∴∠P=∠Q,∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP;故①正確;∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴,∴AO2=OD?OP,∵AE>AB,∴AE>AD,∴OD≠OE,∴OA2≠OE?OP;故②錯誤;在△CQF與△BPE中,∴△CQF≌△BPE,∴CF=BE,∴DF=CE,在△ADF與△DCE中,,∴△ADF≌△DCE,∴S△ADF﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四邊形OECF;故③正確;∵BP=1,AB=3,∴AP=4,∵△AOP∽△DAP,∴,∴BE=,∴QE=,∵△QOE∽△PAD,∴,∴QO=,OE=,∴AO=5﹣QO=,∴tan∠OAE==,故④正確,故選C.點睛:本題考查了相似三角形的判定和性質,全等三角形的判定和性質,正方形的性質,三角函數的定義,熟練掌握全等三角形的判定和性質是解題的關鍵.6、C【解析】
由正方形的性質知DG=CG-CD=2、AD∥GF,據此證△ADM∽△FGM得,求出GM的長,再利用勾股定理求解可得答案.【詳解】解:∵四邊形ABCD和四邊形CEFG是正方形,
∴AD=CD=BC=1、CE=CG=GF=3,∠ADM=∠G=90°,
∴DG=CG-CD=2,AD∥GF,
則△ADM∽△FGM,∴,即,解得:GM=,∴FM===,故選:C.【點睛】本題主要考查相似三角形的判定與性質,解題的關鍵是熟練掌握正方形的性質、相似三角形的判定與性質及勾股定理等知識點.7、D【解析】
直接利用特殊角的三角函數值求解即可.【詳解】tan30°=33,故選:D【點睛】本題考查特殊角的三角函數的值的求法,熟記特殊的三角函數值是解題的關鍵.8、D【解析】
①根據作圖過程可判定AD是∠BAC的角平分線;②利用角平分線的定義可推知∠CAD=10°,則由直角三角形的性質來求∠ADC的度數;③利用等角對等邊可以證得△ADB是等腰三角形,由等腰三角形的“三合一”性質可以證明點D在AB的中垂線上;④利用10°角所對的直角邊是斜邊的一半,三角形的面積計算公式來求兩個三角形面積之比.【詳解】①根據作圖過程可知AD是∠BAC的角平分線,①正確;②如圖,在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°,又∵AD是∠BAC的平分線,∴∠1=∠2=12∠CAB=10°,∴∠1=90°-∠2=60°,即∠ADC=60°,②正確;③∵∠1=∠B=10°,∴AD=BD,∴點D在AB的中垂線上,③正確;④如圖,∵在直角△ACD中,∠2=10°,∴CD=12AD,∴BC=CD+BD=12AD+AD=32AD,S△DAC=12AC?CD=14AC?AD.∴S△ABC=12AC?BC=12AC?32AD=3【點睛】本題主要考查尺規作角平分線、角平分線的性質定理、三角形的外角以及等腰三角形的性質,熟練掌握有關知識點是解答的關鍵.9、C【解析】試題分析:根據軸對稱圖形的概念:如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形.據此對圖中的圖形進行判斷.解:圖(1)有一條對稱軸,是軸對稱圖形,符合題意;圖(2)不是軸對稱圖形,因為找不到任何這樣的一條直線,使它沿這條直線折疊后,直線兩旁的部分能夠重合,即不滿足軸對稱圖形的定義.不符合題意;圖(3)有二條對稱軸,是軸對稱圖形,符合題意;圖(3)有五條對稱軸,是軸對稱圖形,符合題意;圖(3)有一條對稱軸,是軸對稱圖形,符合題意.故軸對稱圖形有4個.故選C.考點:軸對稱圖形.10、D【解析】
根據二次根式和分式有意義的條件計算即可.【詳解】解:∵有意義,∴a+2≥0且a≠0,解得a≥-2且a≠0.故本題答案為:D.【點睛】二次根式和分式有意義的條件是本題的考點,二次根式有意義的條件是被開方數大于等于0,分式有意義的條件是分母不為0.二、填空題(共7小題,每小題3分,滿分21分)11、兩點確定一條直線;同圓或等圓中半徑相等【解析】
根據尺規作圖的方法,兩點之間確定一條直線的原理即可解題.【詳解】解:∵兩點之間確定一條直線,CD和AB都是圓的半徑,∴AB=CD,依據是兩點確定一條直線;同圓或等圓中半徑相等.【點睛】本題考查了尺規作圖:一條線段等于已知線段,屬于簡單題,熟悉尺規作圖方法是解題關鍵.12、(2,3)【解析】試題分析:利用配方法將拋物線的解析式y=﹣x2+4x﹣1轉化為頂點式解析式y=﹣(x﹣2)2+3,然后求其頂點坐標為:(2,3).考點:二次函數的性質13、33.【解析】試題分析:設品嘗孔明菜的朋友有x人,依題意得,5x+3=6x-3,解得x=6,所以孔明菜有5x+3=33袋.考點:一元一次方程的應用.14、1.【解析】
連接BD,如圖,根據圓周角定理得到∠ABD=90°,則利用互余計算出∠D=1°,然后再利用圓周角定理得到∠ACB的度數.【詳解】連接BD,如圖,∵AD為△ABC的外接圓⊙O的直徑,∴∠ABD=90°,∴∠D=90°﹣∠BAD=90°﹣50°=1°,∴∠ACB=∠D=1°.故答案為1.【點睛】本題考查了三角形的外接圓與外心:三角形外接圓的圓心是三角形三條邊垂直平分線的交點,叫做三角形的外心.也考查了圓周角定理.15、360°.【解析】
根據多邊形的外角和等于360°解答即可.【詳解】由多邊形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案為360°.【點睛】本題考查的是多邊形的內角和外角,掌握多邊形的外角和等于360°是解題的關鍵.16、2【解析】根據分式方程的解法,先去分母化為整式方程為2(x+1)=3x,解得x=2,檢驗可知x=2是原分式方程的解.故答案為2.17、(,),(-4,-5)【解析】
求出點A、B、C的坐標,當D在x軸下方時,設直線CD與x軸交于點E,由于∠DCB=∠ACO.所以tan∠DCB=tan∠ACO,從而可求出E的坐標,再求出CE的直線解析式,聯立拋物線即可求出D的坐標,再由對稱性即可求出D在x軸上方時的坐標.【詳解】令y=0代入y=-x2-2x+3,∴x=-3或x=1,∴OA=1,OB=3,令x=0代入y=-x2-2x+3,∴y=3,∴OC=3,當點D在x軸下方時,∴設直線CD與x軸交于點E,過點E作EG⊥CB于點G,∵OB=OC,∴∠CBO=45°,∴BG=EG,OB=OC=3,∴由勾股定理可知:BC=3,設EG=x,∴CG=3-x,∵∠DCB=∠ACO.∴tan∠DCB=tan∠ACO=,∴,∴x=,∴BE=x=,∴OE=OB-BE=,∴E(-,0),設CE的解析式為y=mx+n,交拋物線于點D2,把C(0,3)和E(-,0)代入y=mx+n,∴,解得:.∴直線CE的解析式為:y=2x+3,聯立解得:x=-4或x=0,∴D2的坐標為(-4,-5)設點E關于BC的對稱點為F,連接FB,∴∠FBC=45°,∴FB⊥OB,∴FB=BE=,∴F(-3,)設CF的解析式為y=ax+b,把C(0,3)和(-3,)代入y=ax+b解得:,∴直線CF的解析式為:y=x+3,聯立解得:x=0或x=-∴D1的坐標為(-,)故答案為(-,)或(-4,-5)【點睛】本題考查二次函數的綜合問題,解題的關鍵是根據對稱性求出相關點的坐標,利用直線解析式以及拋物線的解析式即可求出點D的坐標.三、解答題(共7小題,滿分69分)18、(1)證明見解析(2)BC=【解析】
(1)AB是⊙O的直徑,得∠ADB=90°,從而得出∠BAD=∠DBC,即∠ABC=90°,即可證明BC是⊙O的切線;(2)可證明△ABC∽△BDC,則,即可得出BC=.【詳解】(1)∵AB是⊙O的切直徑,∴∠ADB=90°,又∵∠BAD=∠BED,∠BED=∠DBC,∴∠BAD=∠DBC,∴∠BAD+∠ABD=∠DBC+∠ABD=90°,∴∠ABC=90°,∴BC是⊙O的切線;(2)解:∵∠BAD=∠DBC,∠C=∠C,∴△ABC∽△BDC,∴,即BC2=AC?CD=(AD+CD)?CD=10,∴BC=.考點:1.切線的判定;2.相似三角形的判定和性質.19、(1)△CPD.理由參見解析;(2)證明參見解析;(3)PC2=PE?PF.理由參見解析.【解析】
(1)根據菱形的性質,利用SAS來判定兩三角形全等;(2)根據第一問的全等三角形結論及已知,利用兩組角相等則兩三角形相似來判定即可;(3)根據相似三角形的對應邊成比例及全等三角形的對應邊相等即可得到結論.【詳解】解:(1)△APD≌△CPD.理由:∵四邊形ABCD是菱形,∴AD=CD,∠ADP=∠CDP.又∵PD=PD,∴△APD≌△CPD(SAS).(2)∵△APD≌△CPD,∴∠DAP=∠DCP,∵CD∥AB,∴∠DCF=∠DAP=∠CFB,又∵∠FPA=∠FPA,∴△APE∽△FPA(兩組角相等則兩三角形相似).(3)猜想:PC2=PE?PF.理由:∵△APE∽△FPA,∴即PA2=PE?PF.∵△APD≌△CPD,∴PA=PC.∴PC2=PE?PF.【點睛】本題考查1.相似三角形的判定與性質;2.全等三角形的判定;3.菱形的性質,綜合性較強.20、詳見解析【解析】
(1)設一個小球使水面升高x厘米,一個大球使水面升高y厘米,根據圖象提供的數據建立方程求解即可.(1)設應放入大球m個,小球n個,根據題意列二元一次方程組求解即可.【詳解】解:(1)設一個小球使水面升高x厘米,由圖意,得2x=21﹣16,解得x=1.設一個大球使水面升高y厘米,由圖意,得1y=21﹣16,解得:y=2.所以,放入一個小球水面升高1cm,放入一個大球水面升高2cm.(1)設應放入大球m個,小球n個,由題意,得,解得:.答:如果要使水面上升到50cm,應放入大球4個,小球6個.21、(1)200;0.6(2)非常了解20%,比較了解60%;72°;(3)900人【解析】
(1)根據非常了解的頻數與頻率即可求出本次問卷調查取樣的樣本容量,用1減去各等級的頻率即可得到m值;(2)根據非常了解的頻率、比較了解的頻率即可求出其百分比,與非常了解的圓心角度數;(3)用全校人數乘以非常了解的頻率即可.【詳解】解:(1)本次問卷調查取樣的樣本容量為40÷0.2=200;m=1-0.2-0.18-0.02=0.6(2)非常了解20%,比較了解60%;非常了解的圓心角度數:360°×20%=72°(3)1500×60%=900(人)答:“比較了解”垃圾分類知識的人數約為900人.【點睛】此題主要考查扇形統計圖的應用,解題的關鍵是根據頻數
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 天水師范學院《審計學綜合實訓》2023-2024學年第二學期期末試卷
- 九年級語文(下冊)學生課外閱讀計劃
- 安徽汽車職業技術學院《醫學遺傳學B》2023-2024學年第二學期期末試卷
- 2025-2030碳排放交易行業市場發展現狀及競爭格局與投資價值研究報告
- 2025-2030礦泉水產品入市調查研究報告
- 濟寧職業技術學院《經濟學導論E》2023-2024學年第二學期期末試卷
- 酒泉職業技術學院《機械工程項目管理》2023-2024學年第二學期期末試卷
- 皖南醫學院《甲骨文書法藝術》2023-2024學年第二學期期末試卷
- 湖北汽車工業學院《工程流體力學》2023-2024學年第二學期期末試卷
- 消防水管道改造應急預案
- 2021城鎮燃氣用二甲醚應用技術規程
- 【保安服務】服務承諾
- 07第七講 發展全過程人民民主
- 弱電智能化系統施工方案
- 對外派人員的員工幫助計劃以華為公司為例
- 2020-2021學年浙江省寧波市鎮海區七年級(下)期末數學試卷(附答案詳解)
- GB/T 9162-2001關節軸承推力關節軸承
- GB/T 34560.2-2017結構鋼第2部分:一般用途結構鋼交貨技術條件
- 閱讀繪本《小種子》PPT
- 醫院清潔消毒與滅菌課件
評論
0/150
提交評論