




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某幾何體的三視圖如圖所示,若圖中小正方形的邊長均為1,則該幾何體的體積是A. B. C. D.2.二項式的展開式中,常數項為()A. B.80 C. D.1603.復數的共軛復數為()A. B. C. D.4.設,分別是橢圓的左、右焦點,過的直線交橢圓于,兩點,且,,則橢圓的離心率為()A. B. C. D.5.已知函數(,是常數,其中且)的大致圖象如圖所示,下列關于,的表述正確的是()A., B.,C., D.,6.若某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的體積是()A.36cm3 B.48cm3 C.60cm3 D.72cm37.ΔABC中,如果lgcosA=lgsinA.等邊三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形8.函數,,的部分圖象如圖所示,則函數表達式為()A. B.C. D.9.函數的圖象如圖所示,則它的解析式可能是()A. B.C. D.10.若的二項式展開式中二項式系數的和為32,則正整數的值為()A.7 B.6 C.5 D.411.已知數列是以1為首項,2為公差的等差數列,是以1為首項,2為公比的等比數列,設,,則當時,的最大值是()A.8 B.9 C.10 D.1112.某三棱錐的三視圖如圖所示,那么該三棱錐的表面中直角三角形的個數為()A.1 B.2 C.3 D.0二、填空題:本題共4小題,每小題5分,共20分。13.設為定義在上的偶函數,當時,(為常數),若,則實數的值為______.14.若,則=______,=______.15.若關于的不等式在上恒成立,則的最大值為__________.16.已知等差數列的前項和為,且,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓C:(a>b>0)的兩個焦點分別為F1(-,0)、F2(,0).點M(1,0)與橢圓短軸的兩個端點的連線相互垂直.(1)求橢圓C的方程;(2)已知點N的坐標為(3,2),點P的坐標為(m,n)(m≠3).過點M任作直線l與橢圓C相交于A、B兩點,設直線AN、NP、BN的斜率分別為k1、k2、k3,若k1+k3=2k2,試求m,n滿足的關系式.18.(12分)設為實數,已知函數,.(1)當時,求函數的單調區間:(2)設為實數,若不等式對任意的及任意的恒成立,求的取值范圍;(3)若函數(,)有兩個相異的零點,求的取值范圍.19.(12分)在邊長為的正方形,分別為的中點,分別為的中點,現沿折疊,使三點重合,構成一個三棱錐.(1)判別與平面的位置關系,并給出證明;(2)求多面體的體積.20.(12分)已知函數(為常數)(Ⅰ)當時,求的單調區間;(Ⅱ)若為增函數,求實數的取值范圍.21.(12分)在直角坐標系中,直線的參數方程為(為參數),直線的參數方程為,(為參數).以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(Ⅰ)求的極坐標方程和的直角坐標方程;(Ⅱ)設分別交于兩點(與原點不重合),求的最小值.22.(10分)設函數.(1)當時,求不等式的解集;(2)若不等式恒成立,求實數a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】該幾何體是直三棱柱和半圓錐的組合體,其中三棱柱的高為2,底面是高和底邊均為4的等腰三角形,圓錐的高為4,底面半徑為2,則其體積為,.故選B點睛:由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據三視圖進行調整.2、A【解析】
求出二項式的展開式的通式,再令的次數為零,可得結果.【詳解】解:二項式展開式的通式為,令,解得,則常數項為.故選:A.【點睛】本題考查二項式定理指定項的求解,關鍵是熟練應用二項展開式的通式,是基礎題.3、D【解析】
直接相乘,得,由共軛復數的性質即可得結果【詳解】∵∴其共軛復數為.故選:D【點睛】熟悉復數的四則運算以及共軛復數的性質.4、C【解析】
根據表示出線段長度,由勾股定理,解出每條線段的長度,再由勾股定理構造出關系,求出離心率.【詳解】設,則由橢圓的定義,可以得到,在中,有,解得在中,有整理得,故選C項.【點睛】本題考查幾何法求橢圓離心率,是求橢圓離心率的一個常用方法,通過幾何關系,構造出關系,得到離心率.屬于中檔題.5、D【解析】
根據指數函數的圖象和特征以及圖象的平移可得正確的選項.【詳解】從題設中提供的圖像可以看出,故得,故選:D.【點睛】本題考查圖象的平移以及指數函數的圖象和特征,本題屬于基礎題.6、B【解析】試題分析:該幾何體上面是長方體,下面是四棱柱;長方體的體積,四棱柱的底面是梯形,體積為,因此總的體積.考點:三視圖和幾何體的體積.7、B【解析】
化簡得lgcosA=lgsinCsinB=﹣lg2,即cosA=sinCsinB=12,結合0<A<π,可求A=π【詳解】由lgcosA=lgsinC-lgsinB=-lg2,可得lgcosA=∵0<A<π,∴A=π3,B+C=2π3,∴sinC=12sinB=12sin2π3-C=34cosC+故選:B【點睛】本題主要考查了對數的運算性質的應用,兩角差的正弦公式的應用,解題的關鍵是靈活利用基本公式,屬于基礎題.8、A【解析】
根據圖像的最值求出,由周期求出,可得,再代入特殊點求出,化簡即得所求.【詳解】由圖像知,,,解得,因為函數過點,所以,,即,解得,因為,所以,.故選:A【點睛】本題考查根據圖像求正弦型函數的解析式,三角函數誘導公式,屬于基礎題.9、B【解析】
根據定義域排除,求出的值,可以排除,考慮排除.【詳解】根據函數圖象得定義域為,所以不合題意;選項,計算,不符合函數圖象;對于選項,與函數圖象不一致;選項符合函數圖象特征.故選:B【點睛】此題考查根據函數圖象選擇合適的解析式,主要利用函數性質分析,常見方法為排除法.10、C【解析】
由二項式系數性質,的展開式中所有二項式系數和為計算.【詳解】的二項展開式中二項式系數和為,.故選:C.【點睛】本題考查二項式系數的性質,掌握二項式系數性質是解題關鍵.11、B【解析】
根據題意計算,,,解不等式得到答案.【詳解】∵是以1為首項,2為公差的等差數列,∴.∵是以1為首項,2為公比的等比數列,∴.∴.∵,∴,解得.則當時,的最大值是9.故選:.【點睛】本題考查了等差數列,等比數列,f分組求和,意在考查學生對于數列公式方法的靈活運用.12、C【解析】
由三視圖還原原幾何體,借助于正方體可得三棱錐的表面中直角三角形的個數.【詳解】由三視圖還原原幾何體如圖,其中,,為直角三角形.∴該三棱錐的表面中直角三角形的個數為3.故選:C.【點睛】本小題主要考查由三視圖還原為原圖,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
根據為定義在上的偶函數,得,再根據當時,(為常數)求解.【詳解】因為為定義在上的偶函數,所以,又因為當時,,所以,所以實數的值為1.故答案為:1【點睛】本題主要考查函數奇偶性的應用,還考查了運算求解的能力,屬于基礎題.14、10【解析】
①根據換底公式計算即可得解;②根據同底對數加法法則,結合①的結果即可求解.【詳解】①由題:,則;②由①可得:.故答案為:①1,②0【點睛】此題考查對數的基本運算,涉及換底公式和同底對數加法運算,屬于基礎題目.15、【解析】
分類討論,時不合題意;時求導,求出函數的單調區間,得到在上的最小值,利用不等式恒成立轉化為函數最小值,化簡得,構造放縮函數對自變量再研究,可解,【詳解】令;當時,,不合題意;當時,,令,得或,所以在區間和上單調遞減.因為,且在區間上單調遞增,所以在處取極小值,即最小值為.若,,則,即.當時,,當時,則.設,則.當時,;當時,,所以在上單調遞增;在上單調遞減,所以,即,所以的最大值為.故答案為:【點睛】本題考查不等式恒成立問題.不等式恒成立問題的求解思路:已知不等式(為實參數)對任意的恒成立,求參數的取值范圍.利用導數解決此類問題可以運用分離參數法;如果無法分離參數,可以考慮對參數或自變量進行分類討論求解,如果是二次不等式恒成立的問題,可以考慮二次項系數與判別式的方法(,或,)求解.16、【解析】
根據等差數列的性質求得,結合等差數列前項和公式求得的值.【詳解】因為為等差數列,所以,解得,所以.故答案為:【點睛】本小題考查等差數列的性質,前項和公式的應用等基礎知識;考查運算求解能力,應用意識.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)m-n-1=0【解析】試題分析:(1)利用M與短軸端點構成等腰直角三角形,可求得b的值,進而得到橢圓方程;(2)設出過M的直線l的方程,將l與橢圓C聯立,得到兩交點坐標關系,然后將k1+k3表示為直線l斜率的關系式,化簡后得k1+k3=2,于是可得m,n的關系式.試題解析:(1)由題意,c=,b=1,所以a=故橢圓C的方程為(2)①當直線l的斜率不存在時,方程為x=1,代入橢圓得,y=±不妨設A(1,),B(1,-)因為k1+k3==2又k1+k3=2k2,所以k2=1所以m,n的關系式為=1,即m-n-1=0②當直線l的斜率存在時,設l的方程為y=k(x-1)將y=k(x-1)代入,整理得:(3k2+1)x2-6k2x+3k2-3=0設A(x1,y1),B(x2,y2),則又y1=k(x1-1),y2=k(x2-1)所以k1+k3======2所以2k2=2,所以k2==1所以m,n的關系式為m-n-1=0綜上所述,m,n的關系式為m-n-1=0.考點:橢圓標準方程,直線與橢圓位置關系,18、(1)函數單調減區間為;單調增區間為.(2)(3)【解析】
(1)據導數和函數單調性的關系即可求出;(2)分離參數,可得對任意的及任意的恒成立,構造函數,利用導數求出函數的最值即可求出的范圍;(3)先求導,再分類討論,根據導數和函數單調性以及最值得關系即可求出的范圍【詳解】解:(1)當時,因為,當時,;當時,.所以函數單調減區間為;單調增區間為.(2)由,得,由于,所以對任意的及任意的恒成立,由于,所以,所以對任意的恒成立,設,,則,所以函數在上單調遞減,在上單調遞增,所以,所以.(3)由,得,其中.①若時,則,所以函數在上單調遞增,所以函數至多有一個零點,不合題意;②若時,令,得.由第(2)小題,知:當時,,所以,所以,所以當時,函數的值域為.所以,存在,使得,即,①且當時,,所以函數在上單調遞增,在上單調遞減.因為函數有兩個零點,,所以.②設,,則,所以函數在單調遞增,由于,所以當時,.所以,②式中的,又由①式,得.由第(1)小題可知,當時,函數在上單調遞減,所以,即.當時,(?。┯捎?所以得,又因為,且函數在上單調遞減,函數的圖象在上不間斷,所以函數在上恰有一個零點;(ⅱ)由于,令,設,,由于時,,,所以設,即.由①式,得,當時,,且,同理可得函數在上也恰有一個零點.綜上,.【點睛】本題考查含參數的導數的單調性,利用導數求不等式恒成立問題,以及考查函數零點問題,考查學生的計算能力,是綜合性較強的題.19、(1)平行,證明見解析;(2).【解析】
(1)由題意及圖形的翻折規律可知應是的一條中位線,利用線面平行的判定定理即可求證;(2)利用條件及線面垂直的判定定理可知,,則平面,在利用錐體的體積公式即可.【詳解】(1)證明:因翻折后、、重合,∴應是的一條中位線,∴,∵平面,平面,∴平面;(2)解:∵,,∴面且,,,又,.【點睛】本題主要考查線面平行的判定定理,線面垂直的判定定理及錐體的體積公式,屬于基礎題.20、(Ⅰ)單調遞增區間為,;單調遞減區間為;(Ⅱ).【解析】
(Ⅰ)對函數進行求導,利用導數判斷函數的單調性即可;(Ⅱ)對函數進行求導,由題意知,為增函數等價于在區間恒成立,利用分離參數法和基本不等式求最值即可求出實數的取值范圍.【詳解】(Ⅰ)由題意知,函數的定義域為,當時,,令,得,或,所以,隨的變化情況如下表:遞增遞減遞增的單調遞增區間為,,單調遞減區間為.(Ⅱ)由題意得在區間恒成立,即在區間恒成立.,當且僅當,即時等號成立.所以,所以的取值范圍是.【點睛】本題考查利用導數求函數的單調區間、利用分離參數法和基本不等式求最值求參數的取值范圍;考查運算求解能力和邏輯推理能力;利用導數把函數單調性問題轉化為不等式恒成立問題是求解本題的關鍵;屬于中檔題、??碱}型.21、(Ⅰ)直線的極坐標方程為,直線的極坐標方程為,的直角坐標方程為;(Ⅱ)2.【解析】
(Ⅰ)由定義可直接寫出直線的極坐標方程,對曲線同乘可得:,轉化成直角坐標為;(Ⅱ)分別聯立兩直線和曲線的方程,由得,由得,則,結合三角函數即可求解;【詳解】(Ⅰ)直線的極坐標方程為,直線的極坐標方程為由曲線的極坐標方程得,所以的直角坐標方程為.(Ⅱ
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 城市管理車輛管理制度
- 安全檢查閉環管理制度
- 行政組織理論的政策分析框架試題及答案
- 醫院處方審查管理制度
- 公司燒水鍋爐管理制度
- 醫藥推廣人員管理制度
- 公路工程風險管控制度試題及答案
- 少年太極社團管理制度
- 嵌入式技術在農業中的創新應用試題及答案
- 近十年春晚分析報告
- 醫用耗材配送服務方案
- 化學發光法測定海水中低濃度硝酸鹽和亞硝酸鹽含量的方法探究及應用的中期報告
- GB/T 10739-2023紙、紙板和紙漿試樣處理和試驗的標準大氣條件
- 教學秘書培訓課件
- 新能源汽車電氣系統檢修(第2版)高職 全套教學課件
- 2016年江蘇理科數學高考試題(含解析)
- 《小學生C++創意編程》第8單元課件 函數
- 專插本《市場營銷學》第七版-16第十六章-促銷策略
- 腹痛診療規范2022版
- 2023天地偉業安防產品技術參數和檢測報告
評論
0/150
提交評論