2023屆甘肅省白銀市靖遠縣第二中學高三沖刺模擬數學試卷含解析_第1頁
2023屆甘肅省白銀市靖遠縣第二中學高三沖刺模擬數學試卷含解析_第2頁
2023屆甘肅省白銀市靖遠縣第二中學高三沖刺模擬數學試卷含解析_第3頁
2023屆甘肅省白銀市靖遠縣第二中學高三沖刺模擬數學試卷含解析_第4頁
2023屆甘肅省白銀市靖遠縣第二中學高三沖刺模擬數學試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年高考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,設為內一點,且,則與的面積之比為A. B.C. D.2.若集合M={1,3},N={1,3,5},則滿足M∪X=N的集合X的個數為()A.1 B.2C.3 D.43.已知拋物線:的焦點為,準線為,是上一點,直線與拋物線交于,兩點,若,則為()A. B.40 C.16 D.4.《九章算術》中記載,塹堵是底面為直角三角形的直三棱柱,陽馬指底面為矩形,一側棱垂直于底面的四棱錐.如圖,在塹堵中,,,當陽馬體積的最大值為時,塹堵的外接球的體積為()A. B. C. D.5.已知集合,,,則集合()A. B. C. D.6.在展開式中的常數項為A.1 B.2 C.3 D.77.一個幾何體的三視圖如圖所示,則這個幾何體的體積為()A. B.C. D.8.若的展開式中二項式系數和為256,則二項式展開式中有理項系數之和為()A.85 B.84 C.57 D.569.為得到函數的圖像,只需將函數的圖像()A.向右平移個長度單位 B.向右平移個長度單位C.向左平移個長度單位 D.向左平移個長度單位10.設是定義在實數集上的函數,滿足條件是偶函數,且當時,,則,,的大小關系是()A. B. C. D.11.三棱錐中,側棱底面,,,,,則該三棱錐的外接球的表面積為()A. B. C. D.12.△ABC的內角A,B,C的對邊分別為,已知,則為()A. B. C.或 D.或二、填空題:本題共4小題,每小題5分,共20分。13.已知正數a,b滿足a+b=1,則的最小值等于__________,此時a=____________.14.設函數,若在上的最大值為,則________.15.滿足約束條件的目標函數的最小值是.16.點到直線的距離為________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,.(1)解;(2)若,證明:.18.(12分)已知直線:與拋物線切于點,直線:過定點Q,且拋物線上的點到點Q的距離與其到準線距離之和的最小值為.(1)求拋物線的方程及點的坐標;(2)設直線與拋物線交于(異于點P)兩個不同的點A、B,直線PA,PB的斜率分別為,那么是否存在實數,使得?若存在,求出的值;若不存在,請說明理由.19.(12分)已知,,分別是三個內角,,的對邊,.(1)求;(2)若,,求,.20.(12分)如圖,設A是由個實數組成的n行n列的數表,其中aij(i,j=1,2,3,…,n)表示位于第i行第j列的實數,且aij{1,-1}.記S(n,n)為所有這樣的數表構成的集合.對于,記ri(A)為A的第i行各數之積,cj(A)為A的第j列各數之積.令a11a12…a1na21a22a2n…………an1an2…ann(Ⅰ)請寫出一個AS(4,4),使得l(A)=0;(Ⅱ)是否存在AS(9,9),使得l(A)=0?說明理由;(Ⅲ)給定正整數n,對于所有的AS(n,n),求l(A)的取值集合.21.(12分)如圖,在斜三棱柱中,平面平面,,,,均為正三角形,E為AB的中點.(Ⅰ)證明:平面;(Ⅱ)求斜三棱柱截去三棱錐后剩余部分的體積.22.(10分)已知橢圓的左右焦點分別是,點在橢圓上,滿足(1)求橢圓的標準方程;(2)直線過點,且與橢圓只有一個公共點,直線與的傾斜角互補,且與橢圓交于異于點的兩點,與直線交于點(介于兩點之間),是否存在直線,使得直線,,的斜率按某種排序能構成等比數列?若能,求出的方程,若不能,請說理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

作交于點,根據向量比例,利用三角形面積公式,得出與的比例,再由與的比例,可得到結果.【詳解】如圖,作交于點,則,由題意,,,且,所以又,所以,,即,所以本題答案為A.【點睛】本題考查三角函數與向量的結合,三角形面積公式,屬基礎題,作出合適的輔助線是本題的關鍵.2、D【解析】可以是共4個,選D.3、D【解析】

如圖所示,過分別作于,于,利用和,聯立方程組計算得到答案.【詳解】如圖所示:過分別作于,于.,則,根據得到:,即,根據得到:,即,解得,,故.故選:.【點睛】本題考查了拋物線中弦長問題,意在考查學生的計算能力和轉化能力.4、B【解析】

利用均值不等式可得,即可求得,進而求得外接球的半徑,即可求解.【詳解】由題意易得平面,所以,當且僅當時等號成立,又陽馬體積的最大值為,所以,所以塹堵的外接球的半徑,所以外接球的體積,故選:B【點睛】本題以中國傳統文化為背景,考查四棱錐的體積、直三棱柱的外接球的體積、基本不等式的應用,體現了數學運算、直觀想象等核心素養.5、D【解析】

根據集合的混合運算,即可容易求得結果.【詳解】,故可得.故選:D.【點睛】本題考查集合的混合運算,屬基礎題.6、D【解析】

求出展開項中的常數項及含的項,問題得解。【詳解】展開項中的常數項及含的項分別為:,,所以展開式中的常數項為:.故選:D【點睛】本題主要考查了二項式定理中展開式的通項公式及轉化思想,考查計算能力,屬于基礎題。7、B【解析】

還原幾何體可知原幾何體為半個圓柱和一個四棱錐組成的組合體,分別求解兩個部分的體積,加和得到結果.【詳解】由三視圖還原可知,原幾何體下半部分為半個圓柱,上半部分為一個四棱錐半個圓柱體積為:四棱錐體積為:原幾何體體積為:本題正確選項:【點睛】本題考查三視圖的還原、組合體體積的求解問題,關鍵在于能夠準確還原幾何體,從而分別求解各部分的體積.8、A【解析】

先求,再確定展開式中的有理項,最后求系數之和.【詳解】解:的展開式中二項式系數和為256故,要求展開式中的有理項,則則二項式展開式中有理項系數之和為:故選:A【點睛】考查二項式的二項式系數及展開式中有理項系數的確定,基礎題.9、D【解析】,所以要的函數的圖象,只需將函數的圖象向左平移個長度單位得到,故選D10、C【解析】∵y=f(x+1)是偶函數,∴f(-x+1)=f(x+1),即函數f(x)關于x=1對稱.

∵當x≥1時,為減函數,∵f(log32)=f(2-log32)=f()且==log34,log34<<3,∴b>a>c,

故選C11、B【解析】由題,側棱底面,,,,則根據余弦定理可得,的外接圓圓心三棱錐的外接球的球心到面的距離則外接球的半徑,則該三棱錐的外接球的表面積為點睛:本題考查的知識點是球內接多面體,熟練掌握球的半徑公式是解答的關鍵.12、D【解析】

由正弦定理可求得,再由角A的范圍可求得角A.【詳解】由正弦定理可知,所以,解得,又,且,所以或。故選:D.【點睛】本題主要考查正弦定理,注意角的范圍,是否有兩解的情況,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】

根據題意,分析可得,由基本不等式的性質可得最小值,進而分析基本不等式成立的條件可得a的值,即可得答案.【詳解】根據題意,正數a、b滿足,則,當且僅當時,等號成立,故的最小值為3,此時.故答案為:3;.【點睛】本題考查基本不等式及其應用,考查轉化與化歸能力,屬于基礎題.14、【解析】

求出函數的導數,由在上,可得在上單調遞增,則函數最大值為,即可求出參數的值.【詳解】解:定義域為,在上單調遞增,故在上的最大值為故答案為:【點睛】本題考查利用導數研究函數的單調性與最值,屬于基礎題.15、-2【解析】

可行域是如圖的菱形ABCD,代入計算,知為最小.16、2【解析】

直接根據點到直線的距離公式即可求出。【詳解】依據點到直線的距離公式,點到直線的距離為。【點睛】本題主要考查點到直線的距離公式的應用。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析.【解析】

(1)在不等式兩邊平方化簡轉化為二次不等式,解此二次不等式即可得出結果;(2)利用絕對值三角不等式可證得成立.【詳解】(1),,由得,不等式兩邊平方得,即,解得或.因此,不等式的解集為;(2),,由絕對值三角不等式可得.因此,.【點睛】本題考查含絕對值不等式的求解,同時也考查了利用絕對值三角不等式證明不等式,考查推理能力與運算求解能力,屬于中等題.18、(1),(1,2);(2)存在,【解析】

(1)由直線恒過點點及拋物線C上的點到點Q的距離與到準線的距離之和的最小值為,求出拋物線的方程,再由直線與拋物線相切,即可求得切點的坐標;(2)直線與拋物線方程聯立,利用根與系數的關系,求得直線PA,PB的斜率,求出斜率之和為定值,即存在實數使得斜率之和為定值.【詳解】(1)由題意,直線變為2x+1-m(2y+1)=0,所以定點Q的坐標為拋物線的焦點坐標,由拋物線C上的點到點Q的距離與到其焦點F的距離之和的最小值為,可得,解得或(舍去),故拋物線C的方程為又由消去y得,因為直線與拋物線C相切,所以,解得,此時,所以點P坐標為(1,2)(2)設存在滿足條件的實數,點,聯立,消去x得,則,依題意,可得,解得m<-1或,由(1)知P(1,2),可得,同理可得,所以=,故存在實數=滿足條件.【點睛】本題主要考查拋物線方程的求解、及直線與圓錐曲線的位置關系的綜合應用,解答此類題目,通常聯立直線方程與拋物線方程,應用一元二次方程根與系數的關系進行求解,此類問題易錯點是復雜式子的變形能力不足,導致錯解,能較好的考查考生的邏輯思維能力、運算求解能力、分析問題解決問題的能力等.19、(1);(2),或,.【解析】

(1)利用正弦定理,轉化原式為,結合,可得,即得解;(2)由余弦定理,結合題中數據,可得解【詳解】(1)由及正弦定理得.因為,所以,代入上式并化簡得.由于,所以.又,故.(2)因為,,,由余弦定理得即,所以.而,所以,為一元二次方程的兩根.所以,或,.【點睛】本題考查了正弦定理,余弦定理的綜合應用,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.20、(Ⅰ)答案見解析;(Ⅱ)不存在,理由見解析;(Ⅲ)【解析】

(Ⅰ)可取第一行都為-1,其余的都取1,即滿足題意;(Ⅱ)用反證法證明:假設存在,得出矛盾,從而證明結論;(Ⅲ)通過分析正確得出l(A)的表達式,以及從A0如何得到A1,A2……,以此類推可得到Ak.【詳解】(Ⅰ)答案不唯一,如圖所示數表符合要求.(Ⅱ)不存在AS(9,9),使得l(A)=0,證明如下:假如存在,使得.因為,,所以,,...,,,,...,這18個數中有9個1,9個-1.令.一方面,由于這18個數中有9個1,9個-1,從而①,另一方面,表示數表中所有元素之積(記這81個實數之積為m);也表示m,從而②,①,②相矛盾,從而不存在,使得.(Ⅲ)記這個實數之積為p.一方面,從“行”的角度看,有;另一方面,從“列”的角度看,有;從而有③,注意到,,下面考慮,,...,,,,...,中-1的個數,由③知,上述2n個實數中,-1的個數一定為偶數,該偶數記為,則1的個數為2n-2k,所以,對數表,顯然.將數表中的由1變為-1,得到數表,顯然,將數表中的由1變為-1,得到數表,顯然,依此類推,將數表中的由1變為-1,得到數表,即數表滿足:,其余,所以,,所以,由k的任意性知,l(A)的取值集合為.【點睛】本題為數列的創新應用題,考查數學分析與思考能力及推理求解能力,解題關鍵是讀懂題意,根據引入的概念與性質進行推理求解,屬于較難題.21、(Ⅰ)見解析;(Ⅱ)【解析】

(Ⅰ)要證明線面平行,需先證明線線平行,所以連接,交于點M,連接ME,證明;(Ⅱ)由題意可知點到平面ABC的距離等于點到平面ABC的距離,根據體積公式剩余部分的體積是.【詳解】(Ⅰ)如圖,連接,交于點M,連接ME,則.因為平面,平面,所以平面.(Ⅱ)因為平面ABC,所以點到平面ABC的距離等于點到平面ABC的距離.如圖,設O是AC的中點,連接,OB.因為為正三角形,所以,又平面平面,平面平面,所以平面ABC.所以點到平面ABC的距離,故三棱錐的體積為.而斜三棱柱的體積為.所以剩余部分的體積為.【點睛】本題考查證明線面平行,計算體積,意在考查推理證明,空間想象能力,計算能力,屬于中檔題型,一般證明線面平行的方法1.證明線線平行,則線面平行,2.證明面面平行,則線面平行,關鍵是證明線線平行,一般構造平行四邊形,則對邊平行,或是構造三角形中位線.22、(1);(2)不能,理由見解析【解析】

(1)設,則,由此即可求出橢圓方程;(2)設直線的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論