2022年貴州省興義中學高三第五次模擬考試數學試卷含解析_第1頁
2022年貴州省興義中學高三第五次模擬考試數學試卷含解析_第2頁
2022年貴州省興義中學高三第五次模擬考試數學試卷含解析_第3頁
2022年貴州省興義中學高三第五次模擬考試數學試卷含解析_第4頁
2022年貴州省興義中學高三第五次模擬考試數學試卷含解析_第5頁
免費預覽已結束,剩余14頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖是某地區2000年至2016年環境基礎設施投資額(單位:億元)的折線圖.則下列結論中表述不正確的是()A.從2000年至2016年,該地區環境基礎設施投資額逐年增加;B.2011年該地區環境基礎設施的投資額比2000年至2004年的投資總額還多;C.2012年該地區基礎設施的投資額比2004年的投資額翻了兩番;D.為了預測該地區2019年的環境基礎設施投資額,根據2010年至2016年的數據(時間變量t的值依次為)建立了投資額y與時間變量t的線性回歸模型,根據該模型預測該地區2019的環境基礎設施投資額為256.5億元.2.函數的大致圖象是()A. B.C. D.3.點在曲線上,過作軸垂線,設與曲線交于點,,且點的縱坐標始終為0,則稱點為曲線上的“水平黃金點”,則曲線上的“水平黃金點”的個數為()A.0 B.1 C.2 D.34.已知等差數列的前n項和為,且,則()A.4 B.8 C.16 D.25.雙曲線的右焦點為,過點且與軸垂直的直線交兩漸近線于兩點,與雙曲線的其中一個交點為,若,且,則該雙曲線的離心率為()A. B. C. D.6.已知函數的導函數為,記,,…,N.若,則()A. B. C. D.7.圓錐底面半徑為,高為,是一條母線,點是底面圓周上一點,則點到所在直線的距離的最大值是()A. B. C. D.8.已知復數,,則()A. B. C. D.9.拋物線的焦點為,點是上一點,,則()A. B. C. D.10.已知函數,則()A.函數在上單調遞增 B.函數在上單調遞減C.函數圖像關于對稱 D.函數圖像關于對稱11.已知函數,若,,,則a,b,c的大小關系是()A. B. C. D.12.若函數的圖象過點,則它的一條對稱軸方程可能是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.命題“”的否定是______.14.學校藝術節對同一類的,,,四件參賽作品,只評一件一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:甲說:“或作品獲得一等獎”;乙說:“作品獲得一等獎”;丙說:“,兩項作品未獲得一等獎”;丁說:“作品獲得一等獎”.若這四位同學中有且只有兩位說的話是對的,則獲得一等獎的作品是______.15.已知等差數列的各項均為正數,,且,若,則________.16.某幾何體的三視圖如圖所示(單位:),則該幾何體的體積是_____;最長棱的長度是_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)選修4-5:不等式選講已知函數的最大值為3,其中.(1)求的值;(2)若,,,求證:18.(12分)在直角坐標系中,圓的參數方程為(為參數),以為極點,軸的非負半軸為極軸建立極坐標系.(1)求圓的極坐標方程;(2)直線的極坐標方程是,射線與圓的交點為、,與直線的交點為,求線段的長.19.(12分)如圖,四棱錐中,底面,,點在線段上,且.(1)求證:平面;(2)若,,,,求二面角的正弦值.20.(12分)如圖,三棱臺的底面是正三角形,平面平面,.(1)求證:;(2)若,求直線與平面所成角的正弦值.21.(12分)已知三棱錐中側面與底面都是邊長為2的等邊三角形,且面面,分別為線段的中點.為線段上的點,且.(1)證明:為線段的中點;(2)求二面角的余弦值.22.(10分)已知函數.(Ⅰ)求在點處的切線方程;(Ⅱ)求證:在上存在唯一的極大值;(Ⅲ)直接寫出函數在上的零點個數.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

根據圖像所給的數據,對四個選項逐一進行分析排除,由此得到表述不正確的選項.【詳解】對于選項,由圖像可知,投資額逐年增加是正確的.對于選項,投資總額為億元,小于年的億元,故描述正確.年的投資額為億,翻兩翻得到,故描述正確.對于選項,令代入回歸直線方程得億元,故選項描述不正確.所以本題選D.【點睛】本小題主要考查圖表分析能力,考查利用回歸直線方程進行預測的方法,屬于基礎題.2.A【解析】

用排除B,C;用排除;可得正確答案.【詳解】解:當時,,,所以,故可排除B,C;當時,,故可排除D.故選:A.【點睛】本題考查了函數圖象,屬基礎題.3.C【解析】

設,則,則,即可得,設,利用導函數判斷的零點的個數,即為所求.【詳解】設,則,所以,依題意可得,設,則,當時,,則單調遞減;當時,,則單調遞增,所以,且,有兩個不同的解,所以曲線上的“水平黃金點”的個數為2.故選:C【點睛】本題考查利用導函數處理零點問題,考查向量的坐標運算,考查零點存在性定理的應用.4.A【解析】

利用等差的求和公式和等差數列的性質即可求得.【詳解】.故選:.【點睛】本題考查等差數列的求和公式和等差數列的性質,考查基本量的計算,難度容易.5.D【解析】

根據已知得本題首先求出直線與雙曲線漸近線的交點,再利用,求出點,因為點在雙曲線上,及,代入整理及得,又已知,即可求出離心率.【詳解】由題意可知,代入得:,代入雙曲線方程整理得:,又因為,即可得到,故選:D.【點睛】本題主要考查的是雙曲線的簡單幾何性質和向量的坐標運算,離心率問題關鍵尋求關于,,的方程或不等式,由此計算雙曲線的離心率或范圍,屬于中檔題.6.D【解析】

通過計算,可得,最后計算可得結果.【詳解】由題可知:所以所以猜想可知:由所以所以故選:D【點睛】本題考查導數的計算以及不完全歸納法的應用,選擇題、填空題可以使用取特殊值,歸納猜想等方法的使用,屬中檔題.7.C【解析】分析:作出圖形,判斷軸截面的三角形的形狀,然后轉化求解的位置,推出結果即可.詳解:圓錐底面半徑為,高為2,是一條母線,點是底面圓周上一點,在底面的射影為;,,過的軸截面如圖:,過作于,則,在底面圓周,選擇,使得,則到的距離的最大值為3,故選:C點睛:本題考查空間點線面距離的求法,考查空間想象能力以及計算能力,解題的關鍵是作出軸截面圖形,屬中檔題.8.B【解析】分析:利用的恒等式,將分子、分母同時乘以,化簡整理得詳解:,故選B點睛:復數問題是高考數學中的常考問題,屬于得分題,主要考查的方面有:復數的分類、復數的幾何意義、復數的模、共軛復數以及復數的乘除運算,在運算時注意符號的正、負問題.9.B【解析】

根據拋物線定義得,即可解得結果.【詳解】因為,所以.故選B【點睛】本題考查拋物線定義,考查基本分析求解能力,屬基礎題.10.C【解析】

依題意可得,即函數圖像關于對稱,再求出函數的導函數,即可判斷函數的單調性;【詳解】解:由,,所以函數圖像關于對稱,又,在上不單調.故正確的只有C,故選:C【點睛】本題考查函數的對稱性的判定,利用導數判斷函數的單調性,屬于基礎題.11.D【解析】

根據題意,求出函數的導數,由函數的導數與函數單調性的關系分析可得在上為增函數,又由,分析可得答案.【詳解】解:根據題意,函數,其導數函數,則有在上恒成立,則在上為增函數;又由,則;故選:.【點睛】本題考查函數的導數與函數單調性的關系,涉及函數單調性的性質,屬于基礎題.12.B【解析】

把已知點坐標代入求出,然后驗證各選項.【詳解】由題意,,或,,不妨取或,若,則函數為,四個選項都不合題意,若,則函數為,只有時,,即是對稱軸.故選:B.【點睛】本題考查正弦型復合函數的對稱軸,掌握正弦函數的性質是解題關鍵.二、填空題:本題共4小題,每小題5分,共20分。13.,【解析】

根據特稱命題的否定為全稱命題得到結果即可.【詳解】解:因為特稱命題的否定是全稱命題,所以,命題,則該命題的否定是:,故答案為:,.【點睛】本題考查全稱命題與特稱命題的否定關系,屬于基礎題.14.B【解析】

首先根據“學校藝術節對四件參賽作品只評一件一等獎”,故假設分別為一等獎,然后判斷甲、乙、丙、丁四位同學的說法的正確性,即可得出結果.【詳解】若A為一等獎,則甲、丙、丁的說法均錯誤,不滿足題意;若B為一等獎,則乙、丙的說法正確,甲、丁的說法錯誤,滿足題意;若C為一等獎,則甲、丙、丁的說法均正確,不滿足題意;若D為一等獎,則乙、丙、丁的說法均錯誤,不滿足題意;綜上所述,故B獲得一等獎.【點睛】本題屬于信息題,可根據題目所給信息來找出解題所需要的條件并得出答案,在做本題的時候,可以采用依次假設為一等獎并通過是否滿足題目條件來判斷其是否正確.15.【解析】

設等差數列的公差為,根據,且,可得,解得,進而得出結論.【詳解】設公差為,因為,所以,所以,所以故答案為:【點睛】本題主要考查了等差數列的通項公式、需熟記公式,屬于基礎題.16.【解析】

由三視圖還原原幾何體,該幾何體為四棱錐,底面為直角梯形,,,側棱底面,由棱錐體積公式求棱錐體積,由勾股定理求最長棱的長度.【詳解】由三視圖還原原幾何體如下圖所示:該幾何體為四棱錐,底面為直角梯形,,,側棱底面,則該幾何體的體積為,,,因此,該棱錐的最長棱的長度為.故答案為:;.【點睛】本題考查由三視圖求體積、棱長,關鍵是由三視圖還原原幾何體,是中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)見解析【解析】

(1)分三種情況去絕對值,求出最大值與已知最大值相等列式可解得;(2)將所證不等式轉化為2ab≥1,再構造函數利用導數判斷單調性求出最小值可證.【詳解】(1)∵,∴.∴當時,取得最大值.∴.(2)由(Ⅰ),得,.∵,當且僅當時等號成立,∴.令,.則在上單調遞減.∴.∴當時,.∴.【點睛】本題考查了絕對值不等式的解法,屬中檔題.本題主要考查了絕對值不等式的求解,以及不等式的恒成立問題,其中解答中根據絕對值的定義,合理去掉絕對值號,及合理轉化恒成立問題是解答本題的關鍵,著重考查分析問題和解答問題的能力,以及轉化思想的應用.18.(1)(2)【解析】

(1)首先將參數方程轉化為普通方程再根據公式化為極坐標方程即可;(2)設,,由,即可求出,則計算可得;【詳解】解:(1)圓的參數方程(為參數)可化為,∴,即圓的極坐標方程為.(2)設,由,解得.設,由,解得.∵,∴.【點睛】本題考查了利用極坐標方程求曲線的交點弦長,考查了推理能力與計算能力,屬于中檔題.19.(1)證明見解析(2)【解析】

(1)要證明平面,只需證明,,即可求得答案;(2)先根據已知證明四邊形為矩形,以為原點,為軸,為軸,為軸,建立坐標系,求得平面的法向量為,平面的法向量,設二面角的平面角為,,即可求得答案.【詳解】(1)平面,平面,.,,.又,平面.(2)由(1)可知.在中,,..又,,四邊形為矩形.以為原點,為軸,為軸,為軸,建立坐標系,如圖:則:,,,,:,設平面的法向量為,即,令,則,由題平面,即平面的法向量為由二面角的平面角為銳角,設二面角的平面角為即二面角的正弦值為:.【點睛】本題主要考查了求證線面垂直和向量法求二面角,解題關鍵是掌握線面垂直判斷定理和向量法求二面角的方法,考查了分析能力和計算能力,屬于中檔題.20.(Ⅰ)見證明;(Ⅱ)【解析】

(Ⅰ)取的中點為,連結,易證四邊形為平行四邊形,即,由于,為的中點,可得到,從而得到,即可證明平面,從而得到;(Ⅱ)易證,,兩兩垂直,以,,分別為,,軸,建立如圖所示的空間直角坐標系,求出平面的一個法向量為,設與平面所成角為,則,即可得到答案.【詳解】解:(Ⅰ)取的中點為,連結.由是三棱臺得,平面平面,從而.∵,∴,∴四邊形為平行四邊形,∴.∵,為的中點,∴,∴.∵平面平面,且交線為,平面,∴平面,而平面,∴.(Ⅱ)連結.由是正三角形,且為中點,則.由(Ⅰ)知,平面,,∴,,∴,,兩兩垂直.以,,分別為,,軸,建立如圖所示的空間直角坐標系.設,則,,,,∴,,.設平面的一個法向量為.由可得,.令,則,,∴.設與平面所成角為,則.【點睛】本題考查了空間幾何中,面面垂直的性質,線線垂直的證明,及線面角的求法,考查了學生的邏輯推理能力與計算求解能力,屬于中檔

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論