




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022年安徽省六安市霍邱戶胡鎮中學高二數學文下學期期末試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.在棱長為1的正方體中,點,分別是線段,(不包括端點)上的動點,且線段平行于平面,則四面體的體積的最大值為(
)A、
B、
C、
D、參考答案:D2.設為整數(),若和被除得的余數相同,則稱和對模同余,記作,已知,且,則的值可為(
)A.2012
B.2011
C.2010
D.2009參考答案:B略3.定義在上的函數,其導函數是成立,則A.
B.C.
D.參考答案:D略4.下列命題是真命題的是(
)①必然事件的概率等于1
②某事件的概率等于1.1
③互斥事件一定是對立事件
④對立事件一定是互斥事件
⑤擲一枚質地均勻的硬幣,觀察它是正面朝上還是反面朝上,這個試驗為古典概型A.①③
B.③⑤
C.
①③⑤
D.①④⑤參考答案:D5.甲乙兩人進行乒乓球比賽,比賽規則為“三局兩勝”即以先贏兩局者為勝,根據經驗,每局比賽中甲獲勝的概率為0.6,則本次比賽甲獲勝的概率是(
)A.0.216
B.0.36
C.0.432
D.0.648參考答案:D略6.若,則等于(
)A.
B.
C.
D.參考答案:A7.是虛數單位,復數=A.
B.
C.
D.參考答案:D略8.已知與x軸有3個交點(0,0),,且在,時取極值,則的值為(
)A.4 B.5 C.6 D.不確定參考答案:C【分析】先確定,由韋達定理可求,再求導函數,由,是的根,結合方程的根與系數關系即可得出結論.【詳解】,,,又,,是兩根,且.由韋達定理,,且在,時取得極值,,.故選:C.【點睛】本題考查利用導數研究函數的極值、韋達定理的應用,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力.9.等比數列的各項均為正數,且,則(
)A.12
B.10
C.8
D.參考答案:B10.已知△ABC的三內角A,B,C成等差數列,則=()A.
B.
C.
D.參考答案:C略二、填空題:本大題共7小題,每小題4分,共28分11.已知函數若關于x的方程f(x)=k有兩個不同的實根,則實數k的取值范圍是________.參考答案:(0,1)畫出分段函數f(x)的圖象如圖所示,結合圖象可以看出,若f(x)=k有兩個不同的實根,即函數y=f(x)的圖象與y=k有兩個不同的交點,k的取值范圍為(0,1).12.已知橢圓和曲線有相同的焦點F1、F2,點P為橢圓和雙曲線的一個交點,則的值是_____.參考答案:25【分析】利用橢圓和雙曲線的定義可求|PF1|+|PF2|=2m,|PF1|﹣|PF2|=2n,平方相減可得.【詳解】∵已知橢圓=1(m>0)和雙曲線=1(n>0)有相同的焦點F1、F2,∴m2﹣9=n2+4,即m2﹣n2=13,假設P在第一象限,根據橢圓和雙曲線的定義可得:|PF1|+|PF2|=2m,|PF1|﹣|PF2|=2n,兩式平方差得4|PF1|?|PF2|=4m2﹣4n2=4×13,∴|PF1|?|PF2|=13.故答案為13.【點睛】本題主要考查橢圓和雙曲線的定義和性質,圓錐曲線問題涉及到曲線上點的問題,一般是考慮定義來解決.13.與直線和曲線都相切的半徑最小的圓的標準方程是
.參考答案:14.已知直線經過橢圓的一個頂點和一個焦點,則這個橢圓的方程為
參考答案:15.解關于的不等式參考答案:解:若,原不等式若,原不等式或若,原不等式
其解的情況應由與1的大小關系決定,故(1)當時,式的解集為;(2)當時,式;(3)當時,式.綜上所述,當時,解集為{};
當時,解集為{};
當時,解集為{};
當時,解集為;
當時,解集為{}.略16.在△中,已知,動點滿足條件,則點的軌跡方程為
.參考答案:17.設點P是雙曲線上一點,焦點F(2,0),點A(3,2),使|PA|+|PF|有最小值時,則點P的坐標是________________________________.參考答案:三、解答題:本大題共5小題,共72分。解答應寫出文字說明,證明過程或演算步驟18.
寫出下列程序運行的結果.(1)a=2
(2)x=100
i=1
i=1WHILE
i<=6
DO
a=a+1
x=x+10
i,a
i,x
i=i+1
i=i+1WEND
LOOP
UNTIL
x=200
END
END參考答案:(1)1,3;2,4;3,5;4,6;5,7;6,8.
(2)1,110;2,120;3,130;4,140;5,150;6,160;7,170;8,180;9,190;10,200.19.《山東省高考改革試點方案》規定:從2017年秋季高中入學的新生開始,不分文理科;2020年開始,高考總成績由語數外3門統考科目和物理、化學等六門選考科目構成.將每門選考科目的考生原始成績從高到低劃分為、、、、、、、共8個等級.參照正態分布原則,確定各等級人數所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.選考科目成績計入考生總成績時,將A至E等級內的考生原始成績,依照等比例轉換法則,分別轉換到、、、、、、、八個分數區間,得到考生的等級成績.某校高一年級共2000人,為給高一學生合理選科提供依據,對六個選考科目進行測試,其中物理考試原始成績基本服從正態分布.(1)求物理原始成績在區間(47,86]的人數;(2)按高考改革方案,若從全省考生中隨機抽取3人,記X表示這3人中等級成績在區間[61,80]的人數,求X的分布列和數學期望.(附:若隨機變量,則,,)參考答案:(Ⅰ)1636人;(Ⅱ)見解析?!痉治觥浚á瘢└鶕龖B曲線的對稱性,可將區間分為和兩種情況,然后根據特殊區間上的概率求出成績在區間內的概率,進而可求出相應的人數;(Ⅱ)由題意得成績在區間[61,80]的概率為,且,由此可得的分布列和數學期望.【詳解】(Ⅰ)因為物理原始成績,所以.所以物理原始成績在(47,86)人數為(人).(Ⅱ)由題意得,隨機抽取1人,其成績在區間[61,80]內的概率為.所以隨機抽取三人,則的所有可能取值為0,1,2,3,且,所以,,,.所以的分布列為0123
所以數學期望.【點睛】(1)解答第一問的關鍵是利用正態分布的三個特殊區間表示所求概率的區間,再根據特殊區間上的概率求解,解題時注意結合正態曲線的對稱性.(2)解答第二問的關鍵是判斷出隨機變量服從二項分布,然后可得分布列及其數學期望.當被抽取的總體的容量較大時,抽樣可認為是等可能的,進而可得隨機變量服從二項分布.20.(本大題滿分10分)已知命題p:方程表示焦點在y軸上的橢圓;命題q:雙曲線的離心率,若p、q有且只有一個為真,求m的取值范圍.參考答案:解:將方程改寫為,只有當即時,方程表示的曲線是焦點在y軸上的橢圓,所以命題p等價于;………………………4分因為雙曲線的離心率,所以,且1,解得,…………………6分
所以命題q等價于;
……………………8分若p真q假,則;若p假q真,則
綜上:的取值范圍為………略21.己知,f(x)=1﹣lnx﹣x2
(1)求曲線f(x)在x=1處的切線方程;
(2)求曲線f(x)的切線的斜率及傾斜角α的取值范圍.
參考答案:(1)解:∵f(x)=1﹣lnx﹣x2
,
∴f′(x)=﹣﹣x,
x=1時,f′(1)=﹣,f(1)=,
∴曲線f(x)在x=1處的切線方程為y﹣=﹣(x﹣1),即10x+8y﹣17=0;
(2)x>0,f′(x)=﹣﹣x≤﹣1,
∴曲線C在點P處切線的斜率為﹣﹣x,傾斜角α的取值范圍為(,]
【考點】利用導數研究曲線上某點切線方程【分析】(1)求導數,確定切線的斜率,即可求曲線f(x)在x=1處的切線方程;(2)求導數,確定切線的斜率及傾斜角α的取值范圍.
22.已知.(Ⅰ)求的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 把握考試動向2025年信息系統項目管理師試題及答案
- 公共政策評估的關鍵指標試題及答案
- 2024年年4K超高清資金籌措計劃書代可行性研究報告
- 軟件設計師考試多層面提升方案試題及答案
- 政治輿論對決策的影響軌跡試題及答案
- 影響公共衛生政策的政治因素分析試題及答案
- 更有效地學習西方政治考試試題及答案
- 軟件設計師考試中的時間分配技巧試題及答案
- 西方國家政策的社會影響分析試題及答案
- 社會心理學在公共政策分析中的應用試題及答案
- 光伏施工安全培訓
- 國企崗位筆試題目及答案
- 社工招錄考試試題及答案
- 餐廳廚房5S管理
- 變配電運行值班員(220kV及以下)高級技師-機考題庫(導出版)
- DB11-T 2398-2025 水利工程巡視檢查作業規范
- 2025春季學期國開電大本科《人文英語3》一平臺在線形考綜合測試(形考任務)試題及答案
- 《人工智能安全導論》 課件 第七章 人工智能在聯邦學習領域
- 員工電動車管理制度
- 百葉窗施工工藝方案 組織設計
- 授權審批管理制度
評論
0/150
提交評論