高中數學高考高考沖刺 全國一等獎_第1頁
高中數學高考高考沖刺 全國一等獎_第2頁
高中數學高考高考沖刺 全國一等獎_第3頁
高中數學高考高考沖刺 全國一等獎_第4頁
高中數學高考高考沖刺 全國一等獎_第5頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年普通高等學校招生全國統一考試(浙江卷)數學解析(理科)一、選擇題:本大題共8小題,每小題5分,共40分,在每小題給出的四個選項中只有一項是符合題目要求的。1、已知集合,則()A.B.C.D.解析:由,,則,故答案C2、某幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積是()A.B.C.D.解析:從三視圖不難看出,其組合體的結構特征為正方體上面放一個正四棱錐,則體積為:,故答案C3、已知是等差數列,公差不為零,前項和是,若成等比數列,則()A.B.C.D.解析:由成等比,得到設4、命題“且的否定形式是()A.且B.或C.且D.或解析:這是考查命題的否定與否命題的區別,否命題是指結論條件全否,而命題的否定則只否定其結論,但要注意量詞的變化,“任意”和“存在”互為否定,故選D5、如圖,設拋物線的焦點為F,不經過焦點的直線上有三個不同的點,其中點在拋物線上,點在軸上,則與的面積之比是()AA.B.C.D.解析:假設軸,則通過拋物線定義即可解決問題通過三角形相似解決,,過點分別作軸的垂線段,則∽所以,故答案A6.設是有限集,定義,其中表示有限集A中的元素個數()A命題①:對任意有限集,“”是“”的充分必要條件;命題②:對任意有限集,,A.命題①和命題②都成立B.命題①和命題②都不成立C.命題①成立,命題②不成立D.命題①不成立,命題②成立解析:此題出自必修1教材的閱讀拓展材料,通過維恩圖就可以解決7、存在函數滿足,對任意都有()DA.B.C.D.解析:D8、如圖,已知,是的中點,沿直線將折成,所成二面角的平面角為,則()BA.B.C.D.解析:借助立方體模型想象便知答案二、填空題:本大題共7小題,多空題每題6分,單空題每題4分,共36分。9、雙曲線的焦距是,漸近線方程是.解析:雙曲線的焦距為:,漸近線方程為:10、已知函數,則,的最小值是.解析:;當時,,當時,,所以函數的最小正周期是,單調遞減區間是.解析:,因此最小正周期為單調遞減區間,當若,則.解析:由13、如圖,三棱錐中,,點分別是的中點,則異面直線所成的角的余弦值是.解析:本題其實用空間向量解決立體幾何問題:,,因此,所以異面直線所成角的余弦值為輔助線解決,取DN中點E,則AN,CM的所成角即為平面角,14、若實數滿足,則的最小值是.解析:此題意指考查線性規劃問題:在取得最小值為5;在取得最小值3,故已知是空間單位向量,,若空間向量滿足,且對于任意,,則,,.解析:原問題等價于當且僅當時取到最小值1,所以三、解答題:本大題共5小題,共74分.解答應寫出文字說明、證明過程或演算步驟.16、(本題滿分14分)在△ABC中,內角A,B,C所對的邊分別為a,b,c,已知A=,=.(1)求tanC的值;(2)若△ABC的面積為7,求b的值。解析:(1)所以得到,所以(2)17、(本題滿分15分)如圖,在三棱柱-中,BAC=,AB=AC=2,,在底面ABC的射影為BC的中點,D為的中點.(1)證明:D平面;(2)求二面角-BD-的平面角的余弦值.解析:(1)取BC中點E,連接,則由在底面ABC的射影為BC的中點,得到平面,從而得到平面平面而在等腰中,,且平面平面所以平面,由三棱柱性質可知,,故平面以E為坐標原點,分別為軸建立空間直角坐標系則則得到平面的法向量;平面的法向量則二面角平面角的余弦值:,故所求余弦值為18、(本題滿分15分)已知函數f(x)=+ax+b(a,bR),記M(a,b)是在區間[-1,1]上的最大值。(1)證明:當|a|2時,M(a,b)2;(2)當a,b滿足M(a,b)2,求|a|+|b|的最大值.解析:(1)(絕對值不等式的考查)證明:由或,而函數的對稱軸為直線,則由(1)知而所以19、(本題滿分15分)已知橢圓上兩個不同的點A,B關于直線y=mx+對稱.(1)求實數m的取值范圍;(2)求△AOB面積的最大值(O為坐標原點).解析:(1)當時,顯然橢圓上沒有使得其關于直線對稱設點,點,則AB的中點為由A,B關于直線對稱得到,由而AB中點在直線上,得到設AB所在直線方程為則直線AB方程為聯立橢圓方程得到:因此得到所以的取值范圍為由(1)可得原點O到直線AB的距離所以,令則故,當時,面積取得最大值20、(本題滿分15分)已知數列滿足=且=-(n)(1)證明:1(n);(2)設數列的前n項和為,證明(n).,而,所以不難發現同號,要證,即證,顯然成立,所以1由,要證即證,即證=1\*GB3①由=1\*GB3\*MERGEF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論