2023屆福建省部分市中考試題猜想數學試卷含解析及點睛_第1頁
2023屆福建省部分市中考試題猜想數學試卷含解析及點睛_第2頁
2023屆福建省部分市中考試題猜想數學試卷含解析及點睛_第3頁
2023屆福建省部分市中考試題猜想數學試卷含解析及點睛_第4頁
2023屆福建省部分市中考試題猜想數學試卷含解析及點睛_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023中考數學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,點A、B、C是⊙O上的三點,且四邊形ABCO是平行四邊形,OF⊥OC交圓O于點F,則∠BAF等于()A.12.5° B.15° C.20° D.22.5°2.“山西八分鐘,驚艷全世界”.2019年2月25日下午,在外交部藍廳隆重舉行山西全球推介活動.山西經濟結構從“一煤獨大”向多元支撐轉變,三年累計退出煤炭過剩產能8800余萬噸,煤層氣產量突破56億立方米.數據56億用科學記數法可表示為()A.56×108 B.5.6×108 C.5.6×109 D.0.56×10103.下列四張印有汽車品牌標志圖案的卡片中,是中心對稱圖形的卡片是()A. B. C. D.4.某市2017年實現生產總值達280億的目標,用科學記數法表示“280億”為()A.28×109 B.2.8×108 C.2.8×109 D.2.8×10105.如圖,將邊長為3a的正方形沿虛線剪成兩塊正方形和兩塊長方形.若拿掉邊長2b的小正方形后,再將剩下的三塊拼成一塊矩形,則這塊矩形較長的邊長為()A.3a+2b B.3a+4b C.6a+2b D.6a+4b6.在一個不透明的口袋里有紅、黃、藍三種顏色的小球,這些球除顏色外都相同,其中有5個紅球,4個藍球.若隨機摸出一個藍球的概率為,則隨機摸出一個黃球的概率為()A. B. C. D.7.若二次函數的圖象與軸有兩個交點,坐標分別是(x1,0),(x2,0),且.圖象上有一點在軸下方,則下列判斷正確的是()A. B. C. D.8.在平面直角坐標系內,點P(a,a+3)的位置一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.實數4的倒數是()A.4 B. C.﹣4 D.﹣10.點M(1,2)關于y軸對稱點的坐標為()A.(﹣1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)二、填空題(共7小題,每小題3分,滿分21分)11.在Rt△ABC中,∠ACB=90°,AC=8,BC=6,點D是以點A為圓心4為半徑的圓上一點,連接BD,點M為BD中點,線段CM長度的最大值為_____.12.計算:21﹣1=1,22﹣1=3,23﹣1=7,24﹣1=15,25﹣1=31,歸納各計算結果中的個位數字規律,猜測22019﹣1的個位數字是_____.13.二次根式中字母x的取值范圍是_____.14.如圖,在平面直角坐標系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA=5,OC=1.若把矩形OABC繞著點O逆時針旋轉,使點A恰好落在BC邊上的A1處,則點C的對應點C1的坐標為_____.15.因式分解:4ax2﹣4ay2=_____.16.若是關于的完全平方式,則__________.17.計算(a3)2÷(a2)3的結果等于________三、解答題(共7小題,滿分69分)18.(10分)已知:△ABC在直角坐標平面內,三個頂點的坐標分別為A(0,3)、B(3,4)、C(2,2)(正方形網格中每個小正方形的邊長是一個單位長度).(1)畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標是;(2)以點B為位似中心,在網格內畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標是;(3)△A2B2C2的面積是平方單位.19.(5分)先化簡÷(x-),然后從-<x<的范圍內選取一個合適的正整數作為x的值代入求值.20.(8分)如圖,在△ABC中,AB>AC,點D在邊AC上.(1)作∠ADE,使∠ADE=∠ACB,DE交AB于點E;(尺規作圖,保留作圖痕跡,不寫作法)(2)若BC=5,點D是AC的中點,求DE的長.21.(10分)在平面直角坐標系中,已知拋物線經過A(﹣4,0),B(0,﹣4),C(2,0)三點.(1)求拋物線解析式;(2)若點M為第三象限內拋物線上一動點,點M的橫坐標為m,△MOA的面積為S.求S關于m的函數關系式,并求出當m為何值時,S有最大值,這個最大值是多少?(3)若點Q是直線y=﹣x上的動點,過Q做y軸的平行線交拋物線于點P,判斷有幾個Q能使以點P,Q,B,O為頂點的四邊形是平行四邊形的點,直接寫出相應的點Q的坐標.22.(10分)如圖,拋物線y=﹣x2+bx+c(a≠0)與x軸交于點A(﹣1,0)和B(3,0),與y軸交于點C,點D的橫坐標為m(0<m<3),連結DC并延長至E,使得CE=CD,連結BE,BC.(1)求拋物線的解析式;(2)用含m的代數式表示點E的坐標,并求出點E縱坐標的范圍;(3)求△BCE的面積最大值.23.(12分)體育老師為了解本校九年級女生1分鐘“仰臥起坐”體育測試項目的達標情況,從該校九年級136名女生中,隨機抽取了20名女生,進行了1分鐘仰臥起坐測試,獲得數據如下:收集數據:抽取20名女生的1分鐘仰臥起坐測試成績(個)如下:3846425255435946253835455148574947535849(1)整理、描述數據:請你按如下分組整理、描述樣本數據,把下列表格補充完整:范圍25≤x≤2930≤x≤3435≤x≤3940≤x≤4445≤x≤4950≤x≤5455≤x≤59人數(說明:每分鐘仰臥起坐個數達到49個及以上時在中考體育測試中可以得到滿分)(2)分析數據:樣本數據的平均數、中位數、滿分率如下表所示:平均數中位數滿分率46.847.545%得出結論:①估計該校九年級女生在中考體育測試中1分鐘“仰臥起坐”項目可以得到滿分的人數為;②該中心所在區縣的九年級女生的1分鐘“仰臥起坐”總體測試成績如下:平均數中位數滿分率45.34951.2%請你結合該校樣本測試成績和該區縣總體測試成績,為該校九年級女生的1分鐘“仰臥起坐”達標情況做一下評估,并提出相應建議.24.(14分)如圖所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分線AE交BC于點E,連接DE.(1)求證:四邊形ABED是菱形;(2)若∠ABC=60°,CE=2BE,試判斷△CDE的形狀,并說明理由.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

解:連接OB,∵四邊形ABCO是平行四邊形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB為等邊三角形,∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°,由圓周角定理得∠BAF=∠BOF=15°故選:B2、C【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值是易錯點,由于56億有10位,所以可以確定n=10﹣1=1.【詳解】56億=56×108=5.6×101,故選C.【點睛】此題考查科學記數法表示較大的數的方法,準確確定a與n值是關鍵.3、C【解析】試題分析:由中心對稱圖形的概念可知,這四個圖形中只有第三個是中心對稱圖形,故答案選C.考點:中心對稱圖形的概念.4、D【解析】

根據科學計數法的定義來表示數字,選出正確答案.【詳解】解:把一個數表示成a(1≤a<10,n為整數)與10的冪相乘的形式,這種記數法叫做科學記數法,280億用科學計數法表示為2.8×1010,所以答案選D.【點睛】本題考查學生對科學計數法的概念的掌握和將數字用科學計數法表示的能力.5、A【解析】

根據這塊矩形較長的邊長=邊長為3a的正方形的邊長-邊長為2b的小正方形的邊長+邊長為2b的小正方形的邊長的2倍代入數據即可.【詳解】依題意有:3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故這塊矩形較長的邊長為3a+2b.故選A.【點睛】本題主要考查矩形、正方形和整式的運算,熟讀題目,理解題意,清楚題中的等量關系是解答本題的關鍵.6、A【解析】

設黃球有x個,根據摸出一個球是藍球的概率是,得出黃球的個數,再根據概率公式即可得出隨機摸出一個黃球的概率.【詳解】解:設袋子中黃球有x個,根據題意,得:,解得:x=3,即袋中黃球有3個,所以隨機摸出一個黃球的概率為,故選A.【點睛】此題主要考查了概率公式的應用,用到的知識點為:概率=所求情況數與總情況數之比.得到所求的情況數是解決本題的關鍵.7、D【解析】

根據拋物線與x軸有兩個不同的交點,根的判別式△>0,再分a>0和a<0兩種情況對C、D選項討論即可得解.【詳解】A、二次函數y=ax2+bx+c(a≠0)的圖象與x軸有兩個交點無法確定a的正負情況,故本選項錯誤;B、∵x1<x2,∴△=b2-4ac>0,故本選項錯誤;C、若a>0,則x1<x0<x2,若a<0,則x0<x1<x2或x1<x2<x0,故本選項錯誤;D、若a>0,則x0-x1>0,x0-x2<0,所以,(x0-x1)(x0-x2)<0,∴a(x0-x1)(x0-x2)<0,若a<0,則(x0-x1)與(x0-x2)同號,∴a(x0-x1)(x0-x2)<0,綜上所述,a(x0-x1)(x0-x2)<0正確,故本選項正確.8、D【解析】

判斷出P的橫縱坐標的符號,即可判斷出點P所在的相應象限.【詳解】當a為正數的時候,a+3一定為正數,所以點P可能在第一象限,一定不在第四象限,

當a為負數的時候,a+3可能為正數,也可能為負數,所以點P可能在第二象限,也可能在第三象限,

故選D.【點睛】本題考查了點的坐標的知識點,解題的關鍵是由a的取值判斷出相應的象限.9、B【解析】

根據互為倒數的兩個數的乘積是1,求出實數4的倒數是多少即可.【詳解】解:實數4的倒數是:1÷4=.故選:B.【點睛】此題主要考查了一個數的倒數的求法,要熟練掌握,解答此題的關鍵是要明確:互為倒數的兩個數的乘積是1.10、A【解析】

關于y軸對稱的點的坐標特征是縱坐標不變,橫坐標變為相反數.【詳解】點M(1,2)關于y軸對稱點的坐標為(-1,2)【點睛】本題考查關于坐標軸對稱的點的坐標特征,牢記關于坐標軸對稱的點的性質是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】

作AB的中點E,連接EM、CE,根據直角三角形斜邊上的中線等于斜邊的一半以及三角形的中位線定理求得CE和EM的長,然后在△CEM中根據三邊關系即可求解.【詳解】作AB的中點E,連接EM、CE,在直角△ABC中,AB===10,∵E是直角△ABC斜邊AB上的中點,∴CE=AB=5,∵M是BD的中點,E是AB的中點,∴ME=AD=2,∴在△CEM中,5-2≤CM≤5+2,即3≤CM≤1,∴最大值為1,故答案為1.【點睛】本題考查了點與圓的位置關系、三角形的中位線定理的知識,要結合勾股定理、直角三角形斜邊上的中線等于斜邊的一半解答.12、1【解析】

觀察給出的數,發現個位數是循環的,然后再看2019÷4的余數,即可求解.【詳解】由給出的這組數21﹣1=1,22﹣1=3,23﹣1=1,24﹣1=15,25﹣1=31,…,個位數字1,3,1,5循環出現,四個一組,2019÷4=504…3,∴22019﹣1的個位數是1.故答案為1.【點睛】本題考查數的循環規律,確定循環規律,找準余數是解題的關鍵.13、x≤1【解析】

二次根式有意義的條件就是被開方數是非負數,即可求解.【詳解】根據題意得:1﹣x≥0,解得x≤1.故答案為:x≤1【點睛】主要考查了二次根式的意義和性質.性質:二次根式中的被開方數必須是非負數,否則二次根式無意義.14、【解析】

直接利用相似三角形的判定與性質得出△ONC1三邊關系,再利用勾股定理得出答案.【詳解】過點C1作C1N⊥x軸于點N,過點A1作A1M⊥x軸于點M,由題意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠1,則△A1OM∽△OC1N,∵OA=5,OC=1,∴OA1=5,A1M=1,∴OM=4,∴設NO=1x,則NC1=4x,OC1=1,則(1x)2+(4x)2=9,解得:x=±(負數舍去),則NO=,NC1=,故點C的對應點C1的坐標為:(﹣,).故答案為(﹣,).【點睛】此題主要考查了矩形的性質以及勾股定理等知識,正確得出△A1OM∽△OC1N是解題關鍵.15、4a(x﹣y)(x+y)【解析】

首先提取公因式4a,再利用平方差公式分解因式即可.【詳解】4ax2-4ay2=4a(x2-y2)=4a(x-y)(x+y).故答案為4a(x-y)(x+y).【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確運用公式是解題關鍵.16、1或-1【解析】【分析】直接利用完全平方公式的定義得出2(m-3)=±8,進而求出答案.詳解:∵x2+2(m-3)x+16是關于x的完全平方式,∴2(m-3)=±8,解得:m=-1或1,故答案為-1或1.點睛:此題主要考查了完全平方公式,正確掌握完全平方公式的基本形式是解題關鍵.17、1【解析】

根據冪的乘方,底數不變,指數相乘;同底數冪的除法,底數不變,指數相減進行計算即可.【詳解】解:原式=【點睛】本題主要考查冪的乘方和同底數冪的除法,熟記法則是解決本題的關鍵,在計算中不要與其他法則相混淆.冪的乘方,底數不變,指數相乘;同底數冪的除法,底數不變,指數相減.三、解答題(共7小題,滿分69分)18、(1)(2,﹣2);(2)(1,0);(3)1.【解析】試題分析:(1)根據平移的性質得出平移后的圖從而得到點的坐標;(2)根據位似圖形的性質得出對應點位置,從而得到點的坐標;(3)利用等腰直角三角形的性質得出△A2B2C2的面積.試題解析:(1)如圖所示:C1(2,﹣2);故答案為(2,﹣2);(2)如圖所示:C2(1,0);故答案為(1,0);(3)∵=20,=20,=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面積是:××=1平方單位.故答案為1.考點:1、平移變換;2、位似變換;3、勾股定理的逆定理19、當x=-1時,原式=;當x=1時,原式=【解析】

先將括號外的分式進行因式分解,再把括號內的分式通分,然后按照分式的除法法則,將除法轉化為乘法進行計算.【詳解】原式===∵-<x<,且x為整數,∴若使分式有意義,x只能取-1和1當x=1時,原式=.或:當x=-1時,原式=120、(1)作圖見解析;(2)【解析】

(1)根據作一個角等于已知角的步驟解答即可;(2)由作法可得DE∥BC,又因為D是AC的中點,可證DE為△ABC的中位線,從而運用三角形中位線的性質求解.【詳解】解:(1)如圖,∠ADE為所作;(2)∵∠ADE=∠ACB,∴DE∥BC,∵點D是AC的中點,∴DE為△ABC的中位線,∴DE=BC=.21、(1)y=x2+x﹣4;(2)S關于m的函數關系式為S=﹣m2﹣2m+8,當m=﹣1時,S有最大值9;(3)Q坐標為(﹣4,4)或(﹣2+2,2﹣2)或(﹣2﹣2,2+2)時,使點P,Q,B,O為頂點的四邊形是平行四邊形.【解析】

(1)設拋物線解析式為y=ax2+bx+c,然后把點A、B、C的坐標代入函數解析式,利用待定系數法求解即可;(2)利用拋物線的解析式表示出點M的縱坐標,從而得到點M到x軸的距離,然后根據三角形面積公式表示并整理即可得解,根據拋物線的性質求出第三象限內二次函數的最值,然后即可得解;(3)利用直線與拋物線的解析式表示出點P、Q的坐標,然后求出PQ的長度,再根據平行四邊形的對邊相等列出算式,然后解關于x的一元二次方程即可得解.【詳解】解:(1)設拋物線解析式為y=ax2+bx+c,∵拋物線經過A(﹣4,0),B(0,﹣4),C(2,0),∴,解得,∴拋物線解析式為y=x2+x﹣4;(2)∵點M的橫坐標為m,∴點M的縱坐標為m2+m﹣4,又∵A(﹣4,0),∴AO=0﹣(﹣4)=4,∴S=×4×|m2+m﹣4|=﹣(m2+2m﹣8)=﹣m2﹣2m+8,∵S=﹣(m2+2m﹣8)=﹣(m+1)2+9,點M為第三象限內拋物線上一動點,∴當m=﹣1時,S有最大值,最大值為S=9;故答案為S關于m的函數關系式為S=﹣m2﹣2m+8,當m=﹣1時,S有最大值9;(3)∵點Q是直線y=﹣x上的動點,∴設點Q的坐標為(a,﹣a),∵點P在拋物線上,且PQ∥y軸,∴點P的坐標為(a,a2+a﹣4),∴PQ=﹣a﹣(a2+a﹣4)=﹣a2﹣2a+4,又∵OB=0﹣(﹣4)=4,以點P,Q,B,O為頂點的四邊形是平行四邊形,∴|PQ|=OB,即|﹣a2﹣2a+4|=4,①﹣a2﹣2a+4=4時,整理得,a2+4a=0,解得a=0(舍去)或a=﹣4,﹣a=4,所以點Q坐標為(﹣4,4),②﹣a2﹣2a+4=﹣4時,整理得,a2+4a﹣16=0,解得a=﹣2±2,所以點Q的坐標為(﹣2+2,2﹣2)或(﹣2﹣2,2+2),綜上所述,Q坐標為(﹣4,4)或(﹣2+2,2﹣2)或(﹣2﹣2,2+2)時,使點P,Q,B,O為頂點的四邊形是平行四邊形.【點睛】本題是對二次函數的綜合考查有待定系數法求二次函數解析式,三角形的面積,二次函數的最值問題,平行四邊形的對邊相等的性質,平面直角坐標系中兩點間的距離的表示,綜合性較強,但難度不大,仔細分析便不難求解.22、(1)y=﹣x2+2x+1.(2)2≤Ey<2.(1)當m=1.5時,S△BCE有最大值,S△BCE的最大值=.【解析】分析:(1)1)把A、B兩點代入拋物線解析式即可;(2)設,利用求線段中點的公式列出關于m的方程組,再利用0<m<1即可求解;(1)連結BD,過點D作x軸的垂線交BC于點H,由,設出點D的坐標,進而求出點H的坐標,利用三角形的面積公式求出,再利用公式求二次函數的最值即可.詳解:(1)∵拋物線過點A(1,0)和B(1,0)(2)∵∴點C為線段DE中點設

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論