2022-2023學年江蘇省鎮江市聯考中考數學模擬試題含解析_第1頁
2022-2023學年江蘇省鎮江市聯考中考數學模擬試題含解析_第2頁
2022-2023學年江蘇省鎮江市聯考中考數學模擬試題含解析_第3頁
2022-2023學年江蘇省鎮江市聯考中考數學模擬試題含解析_第4頁
2022-2023學年江蘇省鎮江市聯考中考數學模擬試題含解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列選項中,可以用來證明命題“若a2>b2,則a>b“是假命題的反例是()A.a=﹣2,b=1 B.a=3,b=﹣2 C.a=0,b=1 D.a=2,b=12.已知反比例函數y=的圖象在一、三象限,那么直線y=kx﹣k不經過第()象限.A.一 B.二 C.三 D.四3.如圖,點A,B為定點,定直線l//AB,P是l上一動點.點M,N分別為PA,PB的中點,對于下列各值:①線段MN的長;②△PAB的周長;③△PMN的面積;④直線MN,AB之間的距離;⑤∠APB的大小.其中會隨點P的移動而變化的是()A.②③ B.②⑤ C.①③④ D.④⑤4.已知,用尺規作圖的方法在上確定一點,使,則符合要求的作圖痕跡是()A. B.C. D.5.對于不等式組,下列說法正確的是()A.此不等式組的正整數解為1,2,3B.此不等式組的解集為C.此不等式組有5個整數解D.此不等式組無解6.在平面直角坐標系xOy中,將點N(–1,–2)繞點O旋轉180°,得到的對應點的坐標是()A.(1,2) B.(–1,2)C.(–1,–2) D.(1,–2)7.如圖,一把矩形直尺沿直線斷開并錯位,點E、D、B、F在同一條直線上,若∠ADE=125°,則∠DBC的度數為()A.125° B.75° C.65° D.55°8.觀察下列圖形,則第n個圖形中三角形的個數是()A.2n+2 B.4n+4 C.4n﹣4 D.4n9.(2017?鄂州)如圖四邊形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E為CD上一點,且∠BAE=45°.若CD=4,則△ABE的面積為()A.127B.247C.4810.不等式組的解集在數軸上可表示為()A. B. C. D.11.一小組8位同學一分鐘跳繩的次數如下:150,176,168,183,172,164,168,185,則這組數據的中位數為()A.172 B.171 C.170 D.16812.如圖,A、B、C、D是⊙O上的四點,BD為⊙O的直徑,若四邊形ABCO是平行四邊形,則∠ADB的大小為()A.30° B.45° C.60° D.75°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.計算2x3·x2的結果是_______.14.分解因式=________,=__________.15.如圖,?ABCD中,M、N是BD的三等分點,連接CM并延長交AB于點E,連接EN并延長交CD于點F,以下結論:①E為AB的中點;②FC=4DF;③S△ECF=;④當CE⊥BD時,△DFN是等腰三角形.其中一定正確的是_____.16.在函數y=x-4中,自變量x的取值范圍是_____.17.如圖,數軸上點A、B、C所表示的數分別為a、b、c,點C是線段AB的中點,若原點O是線段AC上的任意一點,那么a+b-2c=______.18.已知三角形兩邊的長分別為1、5,第三邊長為整數,則第三邊的長為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)八年級(1)班學生在完成課題學習“體質健康測試中的數據分析”后,利用課外活動時間積極參加體育鍛煉,每位同學從籃球、跳繩、立定跳遠、長跑、鉛球中選一項進行訓練,訓練后都進行了測試.現將項目選擇情況及訓練后籃球定時定點投籃測試成績整理后作出如下統計圖.請你根據上面提供的信息回答下列問題:扇形圖中跳繩部分的扇形圓心角為度,該班共有學生人,訓練后籃球定時定點投籃平均每個人的進球數是.老師決定從選擇鉛球訓練的3名男生和1名女生中任選兩名學生先進行測試,請用列表或畫樹形圖的方法求恰好選中兩名男生的概率.20.(6分)如圖,拋物線(a≠0)的圖象與x軸交于A、B兩點,與y軸交于C點,已知B點坐標為(4,0).(1)求拋物線的解析式;(2)試探究△ABC的外接圓的圓心位置,并求出圓心坐標;(3)若點M是線段BC下方的拋物線上一點,求△MBC的面積的最大值,并求出此時M點的坐標.21.(6分)現有兩個紙箱,每個紙箱內各裝有4個材質、大小都相同的乒乓球,其中一個紙箱內4個小球上分別寫有1、2、3、4這4個數,另一個紙箱內4個小球上分別寫有5、6、7、8這4個數,甲、乙兩人商定了一個游戲,規則是:從這兩個紙箱中各隨機摸出一個小球,然后把兩個小球上的數字相乘,若得到的積是2的倍數,則甲得1分,若得到積是3的倍數,則乙得2分.完成一次游戲后,將球分別放回各自的紙箱,搖勻后進行下一次游戲,最后得分高者勝出.。(1)請你通過列表(或樹狀圖)分別計算乘積是2的倍數和3的倍數的概率;(2)你認為這個游戲公平嗎?為什么?若你認為不公平,請你修改得分規則,使游戲對雙方公平.22.(8分)小丁每天從某報社以每份0.5元買進報紙200分,然后以每份1元賣給讀者,報紙賣不完,當天可退回報社,但報社只按每份0.2元退給小丁,如果小丁平均每天賣出報紙x份,純收入為y元.(1)求y與x之間的函數關系式(要求寫出自變量x的取值范圍);(2)如果每月以30天計算,小丁每天至少要買多少份報紙才能保證每月收入不低于2000元?23.(8分)先化簡再求值:(a﹣)÷,其中a=1+,b=1﹣.24.(10分)如圖,在平面直角坐標系中,四邊形的頂點是坐標原點,點在第一象限,點在第四象限,點在軸的正半軸上,且.(1)求點和點的坐標;(2)點是線段上的一個動點(點不與點重合),以每秒個單位的速度由點向點運動,過點的直線與軸平行,直線交邊或邊于點,交邊或邊于點,設點.運動時間為,線段的長度為,已知時,直線恰好過點.①當時,求關于的函數關系式;②點出發時點也從點出發,以每秒個單位的速度向點運動,點停止時點也停止.設的面積為,求與的函數關系式;③直接寫出②中的最大值是.25.(10分)某小學為每個班級配備了一種可以加熱的飲水機,該飲水機的工作程序是:放滿水后,接通電源,則自動開始加熱,每分鐘水溫上升10℃,待加熱到100℃,飲水機自動停止加熱,水溫開始下降,水溫y(℃)和通電時間x(min)成反比例關系,直至水溫降至室溫,飲水機再次自動加熱,重復上述過程.設某天水溫和室溫為20℃,接通電源后,水溫和時間的關系如下圖所示,回答下列問題:(1)分別求出當0≤x≤8和8<x≤a時,y和x之間的關系式;(2)求出圖中a的值;(3)李老師這天早上7:30將飲水機電源打開,若他想再8:10上課前能喝到不超過40℃的開水,問他需要在什么時間段內接水.26.(12分)如圖所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點.求證:△ACE≌△BCD;若AD=5,BD=12,求DE的長.27.(12分)已知△ABC內接于⊙O,AD平分∠BAC.(1)如圖1,求證:;(2)如圖2,當BC為直徑時,作BE⊥AD于點E,CF⊥AD于點F,求證:DE=AF;(3)如圖3,在(2)的條件下,延長BE交⊙O于點G,連接OE,若EF=2EG,AC=2,求OE的長.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

根據要證明一個結論不成立,可以通過舉反例的方法來證明一個命題是假命題.由此即可解答.【詳解】∵當a=﹣2,b=1時,(﹣2)2>12,但是﹣2<1,∴a=﹣2,b=1是假命題的反例.故選A.【點睛】本題考查了命題與定理,要說明數學命題的錯誤,只需舉出一個反例即可,這是數學中常用的一種方法.2、B【解析】

根據反比例函數的性質得k>0,然后根據一次函數的進行判斷直線y=kx-k不經過的象限.【詳解】∵反比例函數y=的圖象在一、三象限,∴k>0,∴直線y=kx﹣k經過第一、三、四象限,即不經過第二象限.故選:B.【點睛】考查了待定系數法求反比例函數的解析式:設出含有待定系數的反比例函數解析式y=(k為常數,k≠0);把已知條件(自變量與函數的對應值)代入解析式,得到待定系數的方程;解方程,求出待定系數;寫出解析式.也考查了反比例函數與一次函數的性質.3、B【解析】試題分析:①、MN=AB,所以MN的長度不變;②、周長C△PAB=(AB+PA+PB),變化;③、面積S△PMN=S△PAB=×AB·h,其中h為直線l與AB之間的距離,不變;④、直線NM與AB之間的距離等于直線l與AB之間的距離的一半,所以不變;⑤、畫出幾個具體位置,觀察圖形,可知∠APB的大小在變化.故選B考點:動點問題,平行線間的距離處處相等,三角形的中位線4、D【解析】試題分析:D選項中作的是AB的中垂線,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC.故選D.考點:作圖—復雜作圖.5、A【解析】解:,解①得x≤,解②得x>﹣1,所以不等式組的解集為﹣1<x≤,所以不等式組的整數解為1,2,1.故選A.點睛:本題考查了一元一次不等式組的整數解:利用數軸確定不等式組的解(整數解).解決此類問題的關鍵在于正確解得不等式組或不等式的解集,然后再根據題目中對于解集的限制得到下一步所需要的條件,再根據得到的條件進而求得不等式組的整數解.6、A【解析】

根據點N(–1,–2)繞點O旋轉180°,所得到的對應點與點N關于原點中心對稱求解即可.【詳解】∵將點N(–1,–2)繞點O旋轉180°,∴得到的對應點與點N關于原點中心對稱,∵點N(–1,–2),∴得到的對應點的坐標是(1,2).故選A.【點睛】本題考查了旋轉的性質,由旋轉的性質得到的對應點與點N關于原點中心對稱是解答本題的關鍵.7、D【解析】

延長CB,根據平行線的性質求得∠1的度數,則∠DBC即可求得.【詳解】延長CB,延長CB,∵AD∥CB,∴∠1=∠ADE=145°,∴∠DBC=180°?∠1=180°?125°=55°.故答案選:D.【點睛】本題考查的知識點是平行線的性質,解題的關鍵是熟練的掌握平行線的性質.8、D【解析】試題分析:由已知的三個圖可得到一般的規律,即第n個圖形中三角形的個數是4n,根據一般規律解題即可.解:根據給出的3個圖形可以知道:第1個圖形中三角形的個數是4,第2個圖形中三角形的個數是8,第3個圖形中三角形的個數是12,從而得出一般的規律,第n個圖形中三角形的個數是4n.故選D.考點:規律型:圖形的變化類.9、D【解析】解:如圖取CD的中點F,連接BF延長BF交AD的延長線于G,作FH⊥AB于H,EK⊥AB于K.作BT⊥AD于T.∵BC∥AG,∴∠BCF=∠FDG,∵∠BFC=∠DFG,FC=DF,∴△BCF≌△GDF,∴BC=DG,BF=FG,∵AB=BC+AD,AG=AD+DG=AD+BC,∴AB=AG,∵BF=FG,∴BF⊥BG,∠ABF=∠G=∠CBF,∵FH⊥BA,FC⊥BC,∴FH=FC,易證△FBC≌△FBH,△FAH≌△FAD,∴BC=BH,AD=AB,由題意AD=DC=4,設BC=TD=BH=x,在Rt△ABT中,∵AB2=BT2+AT2,∴(x+4)2=42+(4﹣x)2,∴x=1,∴BC=BH=TD=1,AB=5,設AK=EK=y,DE=z,∵AE2=AK2+EK2=AD2+DE2,BE2=BK2+KE2=BC2+EC2,∴42+z2=y2①,(5﹣y)2+y2=12+(4﹣z)2②,由①②可得y=207,∴S△ABE=12×5×207點睛:本題考查直角梯形的性質、全等三角形的判定和性質、角平分線的性質定理、勾股定理、二元二次方程組等知識,解題的關鍵是學會添加常用輔助線,學會利用參數,構建方程解決問題,屬于中考壓軸題.10、A【解析】

先求出每個不等式的解集,再求出不等式組的解集即可.【詳解】解:∵不等式①得:x>1,解不等式②得:x≤2,∴不等式組的解集為1<x≤2,在數軸上表示為:,故選A.【點睛】本題考查了解一元一次不等式組和在數軸上表示不等式組的解集,能根據不等式的解集找出不等式組的解集是解此題的關鍵.11、C【解析】

先把所給數據從小到大排列,然后根據中位數的定義求解即可.【詳解】從小到大排列:150,164,168,168,,172,176,183,185,∴中位數為:(168+172)÷2=170.故選C.【點睛】本題考查了中位數,如果一組數據有奇數個,那么把這組數據從小到大排列后,排在中間位置的數是這組數據的中位數;如果一組數據有偶數個,那么把這組數據從小到大排列后,排在中間位置的兩個數的平均數是這組數據的中位數.12、A【解析】

解:∵四邊形ABCO是平行四邊形,且OA=OC,∴四邊形ABCO是菱形,∴AB=OA=OB,∴△OAB是等邊三角形,∴∠AOB=60°,∵BD是⊙O的直徑,∴點B、D、O在同一直線上,∴∠ADB=∠AOB=30°故選A.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】試題分析:根據單項式乘以單項式,結合同底數冪相乘,底數不變,指數相加,可知2x3·x2=2x3+2=2x5.故答案為:2x514、【解析】此題考查因式分解答案點評:利用提公因式、平方差公式、完全平方公式分解因式15、①③④【解析】

由M、N是BD的三等分點,得到DN=NM=BM,根據平行四邊形的性質得到AB=CD,AB∥CD,推出△BEM∽△CDM,根據相似三角形的性質得到,于是得到BE=AB,故①正確;根據相似三角形的性質得到=,求得DF=BE,于是得到DF=AB=CD,求得CF=3DF,故②錯誤;根據已知條件得到S△BEM=S△EMN=S△CBE,求得=,于是得到S△ECF=,故③正確;根據線段垂直平分線的性質得到EB=EN,根據等腰三角形的性質得到∠ENB=∠EBN,等量代換得到∠CDN=∠DNF,求得△DFN是等腰三角形,故④正確.【詳解】解:∵??M、N是BD的三等分點,∴DN=NM=BM,∵四邊形ABCD是平行四邊形,∴AB=CD,AB∥CD,∴△BEM∽△CDM,∴,∴BE=CD,∴BE=AB,故①正確;∵AB∥CD,∴△DFN∽△BEN,∴=,∴DF=BE,∴DF=AB=CD,∴CF=3DF,故②錯誤;∵BM=MN,CM=2EM,∴△BEM=S△EMN=S△CBE,∵BE=CD,CF=CD,∴=,∴S△EFC=S△CBE=S△MNE,∴S△ECF=,故③正確;∵BM=NM,EM⊥BD,∴EB=EN,∴∠ENB=∠EBN,∵CD∥AB,∴∠ABN=∠CDB,∵∠DNF=∠BNE,∴∠CDN=∠DNF,∴△DFN是等腰三角形,故④正確;故答案為①③④.【點睛】考點:相似三角形的判定與性質;全等三角形的判定與性質;平行四邊形的性質.16、x≥4【解析】試題分析:二次根式有意義的條件:二次根號下的數為非負數,二次根式才有意義.由題意得,.考點:二次根式有意義的條件點評:本題屬于基礎應用題,只需學生熟練掌握二次根式有意義的條件,即可完成.17、1【解析】∵點A、B、C所表示的數分別為a、b、c,點C是線段AB的中點,∴由中點公式得:c=,∴a+b=2c,∴a+b-2c=1.故答案為1.18、2【解析】分析:根據三角形的三邊關系“任意兩邊之和>第三邊,任意兩邊之差<第三邊”,求得第三邊的取值范圍,再進一步根據第三邊是整數求解.詳解:根據三角形的三邊關系,得第三邊>4,而<1.又第三條邊長為整數,則第三邊是2.點睛:此題主要是考查了三角形的三邊關系,同時注意整數這一條件.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)36,40,1;(2).【解析】

(1)先求出跳繩所占比例,再用比例乘以360°即可,用籃球的人數除以所占比例即可;根據加權平均數的概念計算訓練后籃球定時定點投籃人均進球數.(2)畫出樹狀圖,根據概率公式求解即可.【詳解】(1)扇形圖中跳繩部分的扇形圓心角為360°×(1-10%-20%-10%-10%)=36度;

該班共有學生(2+1+7+4+1+1)÷10%=40人;

訓練后籃球定時定點投籃平均每個人的進球數是=1,

故答案為:36,40,1.(2)三名男生分別用A1,A2,A3表示,一名女生用B表示.根據題意,可畫樹形圖如下:由上圖可知,共有12種等可能的結果,選中兩名學生恰好是兩名男生(記為事件M)的結果有6種,∴P(M)==.20、(1);(2)(,0);(3)1,M(2,﹣3).【解析】試題分析:方法一:(1)該函數解析式只有一個待定系數,只需將B點坐標代入解析式中即可.(2)首先根據拋物線的解析式確定A點坐標,然后通過證明△ABC是直角三角形來推導出直徑AB和圓心的位置,由此確定圓心坐標.(3)△MBC的面積可由S△MBC=BC×h表示,若要它的面積最大,需要使h取最大值,即點M到直線BC的距離最大,若設一條平行于BC的直線,那么當該直線與拋物線有且只有一個交點時,該交點就是點M.方法二:(1)該函數解析式只有一個待定系數,只需將B點坐標代入解析式中即可.(2)通過求出A,B,C三點坐標,利用勾股定理或利用斜率垂直公式可求出AC⊥BC,從而求出圓心坐標.(3)利用三角形面積公式,過M點作x軸垂線,水平底與鉛垂高乘積的一半,得出△MBC的面積函數,從而求出M點.試題解析:解:方法一:(1)將B(1,0)代入拋物線的解析式中,得:0=16a﹣×1﹣2,即:a=,∴拋物線的解析式為:.(2)由(1)的函數解析式可求得:A(﹣1,0)、C(0,﹣2);∴OA=1,OC=2,OB=1,即:OC2=OA?OB,又:OC⊥AB,∴△OAC∽△OCB,得:∠OCA=∠OBC;∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°,∴△ABC為直角三角形,AB為△ABC外接圓的直徑;所以該外接圓的圓心為AB的中點,且坐標為:(,0).(3)已求得:B(1,0)、C(0,﹣2),可得直線BC的解析式為:y=x﹣2;設直線l∥BC,則該直線的解析式可表示為:y=x+b,當直線l與拋物線只有一個交點時,可列方程:x+b=,即:,且△=0;∴1﹣1×(﹣2﹣b)=0,即b=﹣1;∴直線l:y=x﹣1.所以點M即直線l和拋物線的唯一交點,有:,解得:即M(2,﹣3).過M點作MN⊥x軸于N,S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×1=1.方法二:(1)將B(1,0)代入拋物線的解析式中,得:0=16a﹣×1﹣2,即:a=,∴拋物線的解析式為:.(2)∵y=(x﹣1)(x+1),∴A(﹣1,0),B(1,0).C(0,﹣2),∴KAC==﹣2,KBC==,∴KAC×KBC=﹣1,∴AC⊥BC,∴△ABC是以AB為斜邊的直角三角形,△ABC的外接圓的圓心是AB的中點,△ABC的外接圓的圓心坐標為(,0).(3)過點M作x軸的垂線交BC′于H,∵B(1,0),C(0,﹣2),∴lBC:y=x﹣2,設H(t,t﹣2),M(t,),∴S△MBC=×(HY﹣MY)(BX﹣CX)=×(t﹣2﹣)(1﹣0)=﹣t2+1t,∴當t=2時,S有最大值1,∴M(2,﹣3).點睛:考查了二次函數綜合題,該題的難度不算太大,但用到的瑣碎知識點較多,綜合性很強.熟練掌握直角三角形的相關性質以及三角形的面積公式是理出思路的關鍵.21、(1)34(2)游戲不公平,修改得分規則為:把兩個小球上的數字相乘,若得到的積是2的倍數,則甲得7分,若得到的積是3的倍數,則乙得12分【解析】試題分析:(1)列表如下:共有16種情況,且每種情況出現的可能性相同,其中,乘積是2的倍數的有12種,乘積是3的倍數的有7種.∴P(兩數乘積是2的倍數)=P(兩數乘積是3的倍數)=(2)游戲不公平,修改得分規則為:把兩個小球上的數字相乘,若得到的積是2的倍數,則甲得7分,若得到的積是3的倍數,則乙得12分考點:概率的計算點評:題目難度不大,考查基本概率的計算,屬于基礎題。本題主要是第二問有點難度,對游戲規則的確定,需要一概率為基礎。22、(1)y=0.8x﹣60(0≤x≤200)(2)159份【解析】解:(1)y=(1﹣0.5)x﹣(0.5﹣0.2)(200﹣x)=0.8x﹣60(0≤x≤200).(2)根據題意得:30(0.8x﹣60)≥2000,解得x≥.∴小丁每天至少要買159份報紙才能保證每月收入不低于2000元.(1)因為小丁每天從某市報社以每份0.5元買出報紙200份,然后以每份1元賣給讀者,報紙賣不完,當天可退回報社,但報社只按每份0.2元退給小丁,所以如果小丁平均每天賣出報紙x份,純收入為y元,則y=(1﹣0.5)x﹣(0.5﹣0.2)(200﹣x)即y=0.8x﹣60,其中0≤x≤200且x為整數.(2)因為每月以30天計,根據題意可得30(0.8x﹣60)≥2000,解之求解即可.23、原式=【解析】

括號內先通分進行分式的加減運算,然后再進行分式的乘除法運算,最后將數個代入進行計算即可.【詳解】原式===,當a=1+,b=1﹣時,原式==.【點睛】本題考查了分式的化簡求值,熟練掌握分式混合運算的運算順序以及運算法則是解題的關鍵.24、(1);(2)①;②當時,;當時,;當時,;③.【解析】

(1)根據等腰直角三角形的性質即可解決問題;(2)首先求出直線OA、AB、OC、BC的解析式.①求出R、Q的坐標,利用兩點間距離公式即可解決問題;②分三種情形分別求解即可解決問題;③利用②中的函數,利用配方法求出最值即可;【詳解】解:(1)由題意是等腰直角三角形,(2),線直的解析式為,直線的解析式時,直線恰好過點.,直線的解析式為,直線的解析式為①當時,,②當時,當時,當時,③當時,,時,的最大值為.當時,.時,的值最大,最大值為.當時,,時,的最大值為,綜上所述,最大值為故答案為.【點睛】本題考查四邊形綜合題、一次函數的應用、二次函數的應用、等腰直角三角形的性質等知識,解題的關鍵是學會構建一次函數或二次函數解決實際問題,屬于中考壓軸題.25、(1)當0≤x≤8時,y=10x+20;當8<x≤a時,y=;(2)40;(3)要在7:50~8:10時間段內接水.【解析】

(1)當0≤x≤8時,設y=k1x+b,將(0,20),(8,100)的坐標分別代入y=k1x+b,即可求得k1、b的值,從而得一次函數的解析式;當8<x≤a時,設y=,將(8,100)的坐標代入y=,求得k2的值,即可得反比例函數的解析式;(2)把y=20代入反比例函數的解析式,即可求得a值;(3)把y=40代入反比例函數的解析式,求得對應x的值,根據想喝到不低于40℃的開水,結合函數圖象求得x的取值范圍,從而求得李老師接水的時間范圍.【詳解】解:(1)當0≤x≤8時,設y=k1x+b,將(0,20),(8,100)的坐標分別代入y=k1x+b,可求得k1=10,b=20∴當0≤x≤8時,y=10x+20.當8<x≤a時,設y=,將(8,100)的坐標代入y=,得k2=800∴當8<x≤a時,y=.綜上,當0≤x≤8時,y=10x+20;當8<x≤a時,y=(2)將y=20代入y=,解得x=40,即a=40.(3)當y=40時,x==20∴要想喝到不低于40℃的開水,x需滿足8≤x≤20,即李老師要在7:38到7:50之間接水.【點睛】本題主要考查了一次函數及反比例函數的應用題,是一個分段函數問題,分段函數是在不同區間有不同對應方式的函數,要特別注意自變量取值范圍的劃分,既要科學合理,又要符合實際.26、(1)證明見解析(2)13【解析】

(1)先根據同角的余角相等得到∠ACE=∠BCD,再結合等腰直角三角形的性質即可證得結論;(2)根據全等三角形的性質可得AE=BD,∠EAC=∠B=45°,即可證得△AED是直角三角形,再利用勾股定理即可求出DE的長.【詳解】(1)∵△ACB和△ECD都是等腰直角三角形∴AC=BC,EC=DC,∠ACB=∠ECD=90°∵∠ACE=∠DCE-∠DCA,∠BCD=∠ACB-∠DCA∴∠ACE=∠BCD∴△ACE≌△BCD(SAS);(2)∵△ACB和△ECD都是等腰直角三角形∴∠BAC=∠B=45°∵△ACE≌△BCD∴AE=BD=12,∠EAC=∠B=45°∴∠

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論