




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,有一矩形紙片ABCD,AB=10,AD=6,將紙片折疊,使AD邊落在AB邊上,折痕為AE,再將以DE為折痕向右折疊,AE與BC交于點F,則的面積為()A.4 B.6 C.8 D.102.如圖,直線y=3x+6與x,y軸分別交于點A,B,以OB為底邊在y軸右側作等腰△OBC,將點C向左平移5個單位,使其對應點C′恰好落在直線AB上,則點C的坐標為()A.(3,3) B.(4,3) C.(﹣1,3) D.(3,4)3.如圖,將△ABC繞點C順時針旋轉,點B的對應點為點E,點A的對應點為點D,當點E恰好落在邊AC上時,連接AD,若∠ACB=30°,則∠DAC的度數是()A. B. C. D.4.下列實數中,最小的數是()A. B. C.0 D.5.計算:得()A.- B.- C.- D.6.如圖,在中,,的垂直平分線交于點,垂足為.如果,則的長為()A.2 B.3 C.4 D.67.如圖,直線l1∥l2,以直線l1上的點A為圓心、適當長為半徑畫弧,分別交直線l1、l2于點B、C,連接AC、BC.若∠ABC=67°,則∠1=()A.23° B.46° C.67° D.78°8.實數a,b,c在數軸上對應點的位置大致如圖所示,O為原點,則下列關系式正確的是()A.a﹣c<b﹣c B.|a﹣b|=a﹣b C.ac>bc D.﹣b<﹣c9.空氣的密度為0.00129g/cm3,0.00129這個數用科學記數法可表示為()A.0.129×10﹣2 B.1.29×10﹣2 C.1.29×10﹣3 D.12.9×10﹣110.運用圖形變化的方法研究下列問題:如圖,AB是⊙O的直徑,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.則圖中陰影部分的面積是(
)A. B. C. D.11.如圖圖形中,既是中心對稱圖形又是軸對稱圖形的是()A. B. C. D.12.某自行車廠準備生產共享單車4000輛,在生產完1600輛后,采用了新技術,使得工作效率比原來提高了20%,結果共用了18天完成任務,若設原來每天生產自行車x輛,則根據題意可列方程為()A.+=18 B.=18C.+=18 D.=18二、填空題:(本大題共6個小題,每小題4分,共24分.)13.中國古代的數學專著《九章算術》有方程組問題“五只雀,六只燕,共重1斤(等于16兩),雀重燕輕.互換其中一只,恰好一樣重.”設每只雀、燕的重量各為x兩,y兩,則根據題意,可得方程組為___.14.某廣場要做一個由若干盆花組成的形如正六邊形的花壇,每條邊(包括兩個頂點)有n(n>1)盆花,設這個花壇邊上的花盆的總數為S,請觀察圖中的規律:按上規律推斷,S與n的關系是________________________________.15.__.16.如圖,點D為矩形OABC的AB邊的中點,反比例函數的圖象經過點D,交BC邊于點E.若△BDE的面積為1,則k=________17.如圖,正方形ABCD的邊長為2,點B與原點O重合,與反比例函數y=的圖像交于E、F兩點,若△DEF的面積為,則k的值_______.18.若am=5,an=6,則am+n=________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某超市開展早市促銷活動,為早到的顧客準備一份簡易早餐,餐品為四樣A:菜包、B:面包、C:雞蛋、D:油條.超市約定:隨機發放,早餐一人一份,一份兩樣,一樣一個.按約定,“某顧客在該天早餐得到兩個雞蛋”是事件(填“隨機”、“必然”或“不可能”);請用列表或畫樹狀圖的方法,求出某顧客該天早餐剛好得到菜包和油條的概率.20.(6分)小明準備用一塊矩形材料剪出如圖所示的四邊形ABCD(陰影部分),做成要制作的飛機的一個機翼,請你根據圖中的數據幫小明計算出CD的長度.(結果保留根號).21.(6分)某數學社團成員想利用所學的知識測量某廣告牌的寬度(圖中線段MN的長),直線MN垂直于地面,垂足為點P.在地面A處測得點M的仰角為58°、點N的仰角為45°,在B處測得點M的仰角為31°,AB=5米,且A、B、P三點在一直線上.請根據以上數據求廣告牌的寬MN的長.(參考數據:sin58°=0.85,cos58°=0.53,tan58°=1.1,sin31°=0.52,cos31°=0.86,tan31°=0.1.)22.(8分)在數學活動課上,老師提出了一個問題:把一副三角尺如圖擺放,直角三角尺的兩條直角邊分別垂直或平行,60°角的頂點在另一個三角尺的斜邊上移動,在這個運動過程中,有哪些變量,能研究它們之間的關系嗎?小林選擇了其中一對變量,根據學習函數的經驗,對它們之間的關系進行了探究.下面是小林的探究過程,請補充完整:(1)畫出幾何圖形,明確條件和探究對象;如圖2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是線段AB上一動點,射線DE⊥BC于點E,∠EDF=60°,射線DF與射線AC交于點F.設B,E兩點間的距離為xcm,E,F兩點間的距離為ycm.(2)通過取點、畫圖、測量,得到了x與y的幾組值,如下表:x/cm0123456y/cm6.95.34.03.34.56(說明:補全表格時相關數據保留一位小數)(3)建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數的圖象;(4)結合畫出的函數圖象,解決問題:當△DEF為等邊三角形時,BE的長度約為cm.23.(8分)作圖題:在∠ABC內找一點P,使它到∠ABC的兩邊的距離相等,并且到點A、C的距離也相等.(寫出作法,保留作圖痕跡)24.(10分)高考英語聽力測試期間,需要杜絕考點周圍的噪音.如圖,點A是某市一高考考點,在位于A考點南偏西15°方向距離125米的點處有一消防隊.在聽力考試期間,消防隊突然接到報警電話,告知在位于C點北偏東75°方向的F點處突發火災,消防隊必須立即趕往救火.已知消防車的警報聲傳播半徑為100米,若消防車的警報聲對聽力測試造成影響,則消防車必須改道行駛.試問:消防車是否需要改道行駛?說明理由.(取1.732)25.(10分)“揚州漆器”名揚天下,某網店專門銷售某種品牌的漆器筆筒,成本為30元/件,每天銷售量(件)與銷售單價(元)之間存在一次函數關系,如圖所示.(1)求與之間的函數關系式;(2)如果規定每天漆器筆筒的銷售量不低于240件,當銷售單價為多少元時,每天獲取的利潤最大,最大利潤是多少?(3)該網店店主熱心公益事業,決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于3600元,試確定該漆器筆筒銷售單價的范圍.26.(12分)小明對,,,四個中小型超市的女工人數進行了統計,并繪制了下面的統計圖表,已知超市有女工20人.所有超市女工占比統計表超市女工人數占比62.5%62.5%50%75%超市共有員工多少人?超市有女工多少人?若從這些女工中隨機選出一個,求正好是超市的概率;現在超市又招進男、女員工各1人,超市女工占比還是75%嗎?甲同學認為是,乙同學認為不是.你認為誰說的對,并說明理由.27.(12分)如圖,方格紙中每個小正方形的邊長都是1個單位長度,在平面直角坐標系中的位置如圖所示.(1)直接寫出關于原點的中心對稱圖形各頂點坐標:________________________;(2)將繞B點逆時針旋轉,畫出旋轉后圖形.求在旋轉過程中所掃過的圖形的面積和點經過的路徑長.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
根據折疊易得BD,AB長,利用相似可得BF長,也就求得了CF的長度,△CEF的面積=CF?CE.【詳解】解:由折疊的性質知,第二個圖中BD=AB-AD=4,第三個圖中AB=AD-BD=2,
因為BC∥DE,
所以BF:DE=AB:AD,
所以BF=2,CF=BC-BF=4,
所以△CEF的面積=CF?CE=8;
故選:C.點睛:
本題利用了:①折疊的性質:折疊是一種對稱變換,它屬于軸對稱,根據軸對稱的性質,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等;②矩形的性質,平行線的性質,三角形的面積公式等知識點.2、B【解析】令x=0,y=6,∴B(0,6),∵等腰△OBC,∴點C在線段OB的垂直平分線上,∴設C(a,3),則C'(a-5,3),∴3=3(a-5)+6,解得a=4,∴C(4,3).故選B.點睛:掌握等腰三角形的性質、函數圖像的平移.3、D【解析】
由題意知:△ABC≌△DEC,∴∠ACB=∠DCE=30°,AC=DC,∴∠DAC=(180°?∠DCA)÷2=(180°?30°)÷2=75°.故選D.【點睛】本題主要考查了旋轉的性質,解題的關鍵是掌握旋轉的性質:①對應點到旋轉中心的距離相等.②對應點與旋轉中心所連線段的夾角等于旋轉角.③旋轉前、后的圖形全等.4、B【解析】
根據正實數都大于0,負實數都小于0,正實數大于一切負實數,兩個負實數絕對值大的反而小,進行比較.【詳解】∵<-2<0<,∴最小的數是-π,故選B.【點睛】此題主要考查了比較實數的大小,要熟練掌握任意兩個實數比較大小的方法.(1)正實數都大于0,負實數都小于0,正實數大于一切負實數,兩個負實數絕對值大的反而小.(2)利用數軸也可以比較任意兩個實數的大小,即在數軸上表示的兩個實數,右邊的總比左邊的大,在原點左側,絕對值大的反而小.5、B【解析】
同級運算從左向右依次計算,計算過程中注意正負符號的變化.【詳解】-故選B.【點睛】本題考查的是有理數的混合運算,熟練掌握運算法則是解題的關鍵.6、C【解析】
先利用垂直平分線的性質證明BE=CE=8,再在Rt△BED中利用30°角的性質即可求解ED.【詳解】解:因為垂直平分,所以,在中,,則;故選:C.【點睛】本題主要考查了線段垂直平分線的性質、30°直角三角形的性質,線段的垂直平分線上的點到線段的兩個端點的距離相等.7、B【解析】
根據圓的半徑相等可知AB=AC,由等邊對等角求出∠ACB,再由平行得內錯角相等,最后由平角180°可求出∠1.【詳解】根據題意得:AB=AC,∴∠ACB=∠ABC=67°,∵直線l1∥l2,∴∠2=∠ABC=67°,∵∠1+∠ACB+∠2=180°,∴∠ACB=180°-∠1-∠ACB=180°-67°-67°=46o.故選B.【點睛】本題考查等腰三角形的性質,平行線的性質,熟練根據這些性質得到角之間的關系是關鍵.8、A【解析】
根據數軸上點的位置確定出a,b,c的范圍,判斷即可.【詳解】由數軸上點的位置得:a<b<0<c,∴ac<bc,|a﹣b|=b﹣a,﹣b>﹣c,a﹣c<b﹣c.故選A.【點睛】考查了實數與數軸,弄清數軸上點表示的數是解本題的關鍵.9、C【解析】試題分析:0.00129這個數用科學記數法可表示為1.29×10﹣1.故選C.考點:科學記數法—表示較小的數.10、A【解析】【分析】作直徑CG,連接OD、OE、OF、DG,則根據圓周角定理求得DG的長,證明DG=EF,則S扇形ODG=S扇形OEF,然后根據三角形的面積公式證明S△OCD=S△ACD,S△OEF=S△AEF,則S陰影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圓,即可求解.【詳解】作直徑CG,連接OD、OE、OF、DG.∵CG是圓的直徑,∴∠CDG=90°,則DG==8,又∵EF=8,∴DG=EF,∴,∴S扇形ODG=S扇形OEF,∵AB∥CD∥EF,∴S△OCD=S△ACD,S△OEF=S△AEF,∴S陰影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圓=π×52=,故選A.【點睛】本題考查扇形面積的計算,圓周角定理.本題中找出兩個陰影部分面積之間的聯系是解題的關鍵.11、A【解析】A.是軸對稱圖形,是中心對稱圖形,故本選項正確;B.是中心對稱圖,不是軸對稱圖形,故本選項錯誤;C.不是中心對稱圖,是軸對稱圖形,故本選項錯誤;D.不是軸對稱圖形,是中心對稱圖形,故本選項錯誤。故選A.12、B【解析】
根據前后的時間和是18天,可以列出方程.【詳解】若設原來每天生產自行車x輛,根據前后的時間和是18天,可以列出方程.故選B【點睛】本題考核知識點:分式方程的應用.解題關鍵點:根據時間關系,列出分式方程.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】設每只雀、燕的重量各為x兩,y兩,由題意得:故答案是:或.14、S=1n-1【解析】觀察可得,n=2時,S=1;
n=3時,S=1+(3-2)×1=12;
n=4時,S=1+(4-2)×1=18;
…;
所以,S與n的關系是:S=1+(n-2)×1=1n-1.
故答案為S=1n-1.【點睛】本題是一道找規律的題目,這類題型在中考中經常出現.對于找規律的題目首先應找出哪些部分發生了變化,是按照什么規律變化的.15、.【解析】
根據去括號法則和合并同類二次根式法則計算即可.【詳解】解:原式故答案為:【點睛】此題考查的是二次根式的加減運算,掌握去括號法則和合并同類二次根式法則是解決此題的關鍵.16、1【解析】分析:設D(a,),利用點D為矩形OABC的AB邊的中點得到B(2a,),則E(2a,),然后利用三角形面積公式得到?a?(-)=1,最后解方程即可.詳解:設D(a,),
∵點D為矩形OABC的AB邊的中點,
∴B(2a,),
∴E(2a,),
∵△BDE的面積為1,
∴?a?(-)=1,解得k=1.
故答案為1.點睛:本題考查了反比例函數解析式的應用,根據解析式設出點的坐標,結合矩形的性質并利用平面直角坐標系中點的特征確定三角形的兩邊長,進而結合三角形的面積公式列出方程求解,可確定參數k的取值.17、1【解析】
利用對稱性可設出E、F的兩點坐標,表示出△DEF的面積,可求出k的值.【詳解】解:設AF=a(a<2),則F(a,2),E(2,a),∴FD=DE=2?a,∴S△DEF=DF?DE==,解得a=或a=(不合題意,舍去),∴F(,2),把點F(,2)代入解得:k=1,故答案為1.【點睛】本題主要考查反比例函數與正方形和三角形面積的運用,表示出E和F的坐標是關鍵.18、1.【解析】
根據同底數冪乘法性質am·an=am+n,即可解題.【詳解】解:am+n=am·an=5×6=1.【點睛】本題考查了同底數冪乘法計算,屬于簡單題,熟悉法則是解題關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)不可能;(2).【解析】
(1)利用確定事件和隨機事件的定義進行判斷;(2)畫樹狀圖展示所有12種等可能的結果數,再找出其中某顧客該天早餐剛好得到菜包和油條的結果數,然后根據概率公式計算.【詳解】(1)某顧客在該天早餐得到兩個雞蛋”是不可能事件;故答案為不可能;(2)畫樹狀圖:共有12種等可能的結果數,其中某顧客該天早餐剛好得到菜包和油條的結果數為2,所以某顧客該天早餐剛好得到菜包和油條的概率=.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式計算事件A或事件B的概率.20、CD的長度為17﹣17cm.【解析】
在直角三角形中用三角函數求出FD,BE的長,而FC=AE=AB+BE,而CD=FC-FD,從而得到答案.【詳解】解:由題意,在Rt△BEC中,∠E=90°,∠EBC=60°,∴∠BCE=30°,tan30°=,∴BE=ECtan30°=51×=17(cm);∴CF=AE=34+BE=(34+17)cm,在Rt△AFD中,∠FAD=45°,∴∠FDA=45°,∴DF=AF=EC=51cm,則CD=FC﹣FD=34+17﹣51=17﹣17,答:CD的長度為17﹣17cm.【點睛】本題主要考查了在直角三角形中三角函數的應用,解本題的要點在于求出FC與FD的長度,即可求出答案.21、1.8米【解析】
設PA=PN=x,Rt△APM中求得=1.6x,在Rt△BPM中,解得x=3,MN=MP-NP=0.6x=1.8.【詳解】在Rt△APN中,∠NAP=45°,∴PA=PN,在Rt△APM中,,設PA=PN=x,∵∠MAP=58°,∴=1.6x,在Rt△BPM中,,∵∠MBP=31°,AB=5,∴,∴x=3,∴MN=MP-NP=0.6x=1.8(米),答:廣告牌的寬MN的長為1.8米.【點睛】熟練掌握三角函數的定義并能夠靈活運用是解題的關鍵.22、(1)見解析;(1)3.5;(3)見解析;(4)3.1【解析】
根據題意作圖測量即可.【詳解】(1)取點、畫圖、測量,得到數據為3.5故答案為:3.5(3)由數據得(4)當△DEF為等邊三角形是,EF=DE,由∠B=45°,射線DE⊥BC于點E,則BE=EF.即y=x所以,當(1)中圖象與直線y=x相交時,交點橫坐標即為BE的長,由作圖、測量可知x約為3.1.【點睛】本題為動點問題的函數圖象探究題,解得關鍵是按照題意畫圖測量,并將條件轉化成函數圖象研究.23、見解析【解析】
先作出∠ABC的角平分線,再連接AC,作出AC的垂直平分線,兩條平分線的交點即為所求點.【詳解】①以B為圓心,以任意長為半徑畫弧,分別交BC、AB于D、E兩點;②分別以D、E為圓心,以大于DE為半徑畫圓,兩圓相交于F點;③連接AF,則直線AF即為∠ABC的角平分線;⑤連接AC,分別以A、C為圓心,以大于AC為半徑畫圓,兩圓相交于F、H兩點;⑥連接FH交BF于點M,則M點即為所求.【點睛】本題考查的是角平分線及線段垂直平分線的作法,熟練掌握是解題的關鍵.24、不需要改道行駛【解析】
解:過點A作AH⊥CF交CF于點H,由圖可知,∵∠ACH=75°-15°=60°,∴.∵AH>100米,∴消防車不需要改道行駛.過點A作AH⊥CF交CF于點H,應用三角函數求出AH的長,大于100米,不需要改道行駛,不大于100米,需要改道行駛.25、(1);(2)單價為46元時,利潤最大為3840元.(3)單價的范圍是45元到55元.【解析】
(1)可用待定系數法來確定y與x之間的函數關系式;(2)根據利潤=銷售量×單件的利潤,然后將(1)中的函數式代入其中,求出利潤和銷售單件之間的關系式,然后根據其性質來判斷出最大利潤;(3)首先得出w與x的函數關系式,進而利用所獲利潤等于3600元時,對應x的值,根據增減性,求出x的取值范圍.【詳解】(1)由題意得:.故y與x之間的函數關系式為:y=-10x+700,(2)由題意,得-10x+700≥240,解得x≤46,設利潤為w=(x-30)?y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x<50時,w隨x的增大而增大,∴x=46時,w大=-10(46-50)2+4000=3840,答:當銷售單價為46元時,每天獲取的利潤最大,最大利潤是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x1=55,x2=45,如圖所示,由圖象得:當45≤x≤55時,捐款后每天剩余利潤不低
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 消費金融公司用戶畫像構建方法與精準營銷實戰案例研究報告
- 教育培訓機構品牌建設與市場推廣策略優化與實施研究報告
- 2025年元宇宙社交平臺社交平臺社交互動數據挖掘與分析在內容創作中的應用報告
- 海南省2025年七下英語期中調研試題含答案
- 2025年環保產業園循環經濟模式下的生態補償與綠色稅收政策效應分析報告
- 2025年智能家居生態構建與用戶需求滿足度研究報告
- 2025年醫藥行業CRO模式下的合同管理與風險管理報告
- 咨詢工程師VIP課件
- 2025年醫藥企業研發外包(CRO)模式下的專利布局與競爭策略報告
- 2025年醫藥企業全球化戰略與國際化經營策略報告
- QBT 2155-2004 旅行箱包行業標準
- 內蒙古錦山蒙古族中學2024年數學高一下期末綜合測試模擬試題含解析
- 醫院檢驗科實驗室生物安全程序文件SOP
- 醫療設備儀器的清潔消毒
- 基于Matlab的巴特沃斯濾波器設計
- 兒童發展心理學全套課件
- 侵占公司資金還款協議
- 實驗室搬遷方案
- 2013年10月自考英語二試題及答案和評分標準完整版
- 電大國開專科(附答案)《辦公室管理》形考在線(形考任務五)試題
- 聞診問診切診
評論
0/150
提交評論