




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數的圖象上兩點,關于直線的對稱點在的圖象上,則的取值范圍是()A. B. C. D.2.函數的圖象大致為()A. B.C. D.3.函數的對稱軸不可能為()A. B. C. D.4.如圖,正方體的底面與正四面體的底面在同一平面上,且,若正方體的六個面所在的平面與直線相交的平面個數分別記為,則下列結論正確的是()A. B. C. D.5.若集合,,則下列結論正確的是()A. B. C. D.6.拋物線的焦點為F,點為該拋物線上的動點,若點,則的最小值為()A. B. C. D.7.若直線與曲線相切,則()A.3 B. C.2 D.8.在平面直角坐標系xOy中,已知橢圓的右焦點為,若F到直線的距離為,則E的離心率為()A. B. C. D.9.已知數列是以1為首項,2為公差的等差數列,是以1為首項,2為公比的等比數列,設,,則當時,的最大值是()A.8 B.9 C.10 D.1110.正的邊長為2,將它沿邊上的高翻折,使點與點間的距離為,此時四面體的外接球表面積為()A. B. C. D.11.設為等差數列的前項和,若,,則的最小值為()A. B. C. D.12.雙曲線的一條漸近線方程為,那么它的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,是一個四棱錐的平面展開圖,其中間是邊長為的正方形,上面三角形是等邊三角形,左、右三角形是等腰直角三角形,則此四棱錐的體積為_____.14.的展開式中的系數為__________.15.設,分別是橢圓C:()的左、右焦點,直線l過交橢圓C于A,B兩點,交y軸于E點,若滿足,且,則橢圓C的離心率為______.16.已知為偶函數,當時,,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在極坐標系中,曲線的方程為,以極點為原點,極軸所在直線為軸建立直角坐標,直線的參數方程為(為參數),與交于,兩點.(1)寫出曲線的直角坐標方程和直線的普通方程;(2)設點;若、、成等比數列,求的值18.(12分)在中,角A、B、C的對邊分別為a、b、c,且.(1)求角A的大小;(2)若,的平分線與交于點D,與的外接圓交于點E(異于點A),,求的值.19.(12分)在,角、、所對的邊分別為、、,已知.(1)求的值;(2)若,邊上的中線,求的面積.20.(12分)設直線與拋物線交于兩點,與橢圓交于兩點,設直線(為坐標原點)的斜率分別為,若.(1)證明:直線過定點,并求出該定點的坐標;(2)是否存在常數,滿足?并說明理由.21.(12分)某調查機構對某校學生做了一個是否同意生“二孩”抽樣調查,該調查機構從該校隨機抽查了100名不同性別的學生,調查統計他們是同意父母生“二孩”還是反對父母生“二孩”,現已得知100人中同意父母生“二孩”占60%,統計情況如下表:同意不同意合計男生a5女生40d合計100(1)求a,d的值,根據以上數據,能否有97.5%的把握認為是否同意父母生“二孩”與性別有關?請說明理由;(2)將上述調查所得的頻率視為概率,現在從所有學生中,采用隨機抽樣的方法抽取4位學生進行長期跟蹤調查,記被抽取的4位學生中持“同意”態度的人數為X,求X的分布列及數學期望.附:0.150.1000.0500.0250.0102.0722.7063.8415.0246.63522.(10分)已知橢圓過點且橢圓的左、右焦點與短軸的端點構成的四邊形的面積為.(1)求橢圓C的標準方程:(2)設A是橢圓的左頂點,過右焦點F的直線,與橢圓交于P,Q,直線AP,AQ與直線交于M,N,線段MN的中點為E.①求證:;②記,,的面積分別為、、,求證:為定值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
由題可知,可轉化為曲線與有兩個公共點,可轉化為方程有兩解,構造函數,利用導數研究函數單調性,分析即得解【詳解】函數的圖象上兩點,關于直線的對稱點在上,即曲線與有兩個公共點,即方程有兩解,即有兩解,令,則,則當時,;當時,,故時取得極大值,也即為最大值,當時,;當時,,所以滿足條件.故選:D【點睛】本題考查了利用導數研究函數的零點,考查了學生綜合分析,轉化劃歸,數形結合,數學運算的能力,屬于較難題.2、A【解析】
用偶函數的圖象關于軸對稱排除,用排除,用排除.故只能選.【詳解】因為,所以函數為偶函數,圖象關于軸對稱,故可以排除;因為,故排除,因為由圖象知,排除.故選:A【點睛】本題考查了根據函數的性質,辨析函數的圖像,排除法,屬于中檔題.3、D【解析】
由條件利用余弦函數的圖象的對稱性,得出結論.【詳解】對于函數,令,解得,當時,函數的對稱軸為,,.故選:D.【點睛】本題主要考查余弦函數的圖象的對稱性,屬于基礎題.4、A【解析】
根據題意,畫出幾何位置圖形,由圖形的位置關系分別求得的值,即可比較各選項.【詳解】如下圖所示,平面,從而平面,易知與正方體的其余四個面所在平面均相交,∴,∵平面,平面,且與正方體的其余四個面所在平面均相交,∴,∴結合四個選項可知,只有正確.故選:A.【點睛】本題考查了空間幾何體中直線與平面位置關系的判斷與綜合應用,對空間想象能力要求較高,屬于中檔題.5、D【解析】
由題意,分析即得解【詳解】由題意,故,故選:D【點睛】本題考查了元素和集合,集合和集合之間的關系,考查了學生概念理解,數學運算能力,屬于基礎題.6、B【解析】
通過拋物線的定義,轉化,要使有最小值,只需最大即可,作出切線方程即可求出比值的最小值.【詳解】解:由題意可知,拋物線的準線方程為,,過作垂直直線于,由拋物線的定義可知,連結,當是拋物線的切線時,有最小值,則最大,即最大,就是直線的斜率最大,設在的方程為:,所以,解得:,所以,解得,所以,.故選:.【點睛】本題考查拋物線的基本性質,直線與拋物線的位置關系,轉化思想的應用,屬于基礎題.7、A【解析】
設切點為,對求導,得到,從而得到切線的斜率,結合直線方程的點斜式化簡得切線方程,聯立方程組,求得結果.【詳解】設切點為,∵,∴由①得,代入②得,則,,故選A.【點睛】該題考查的是有關直線與曲線相切求參數的問題,涉及到的知識點有導數的幾何意義,直線方程的點斜式,屬于簡單題目.8、A【解析】
由已知可得到直線的傾斜角為,有,再利用即可解決.【詳解】由F到直線的距離為,得直線的傾斜角為,所以,即,解得.故選:A.【點睛】本題考查橢圓離心率的問題,一般求橢圓離心率的問題時,通常是構造關于的方程或不等式,本題是一道容易題.9、B【解析】
根據題意計算,,,解不等式得到答案.【詳解】∵是以1為首項,2為公差的等差數列,∴.∵是以1為首項,2為公比的等比數列,∴.∴.∵,∴,解得.則當時,的最大值是9.故選:.【點睛】本題考查了等差數列,等比數列,f分組求和,意在考查學生對于數列公式方法的靈活運用.10、D【解析】
如圖所示,設的中點為,的外接圓的圓心為,四面體的外接球的球心為,連接,利用正弦定理可得,利用球心的性質和線面垂直的性質可得四邊形為平行四邊形,最后利用勾股定理可求外接球的半徑,從而可得外接球的表面積.【詳解】如圖所示,設的中點為,外接圓的圓心為,四面體的外接球的球心為,連接,則平面,.因為,故,因為,故.由正弦定理可得,故,又因為,故.因為,故平面,所以,因為平面,平面,故,故,所以四邊形為平行四邊形,所以,所以,故外接球的半徑為,外接球的表面積為.故選:D.【點睛】本題考查平面圖形的折疊以及三棱錐外接球表面積的計算,還考查正弦定理和余弦定理,折疊問題注意翻折前后的變量與不變量,外接球問題注意先確定外接球的球心的位置,然后把半徑放置在可解的直角三角形中來計算,本題有一定的難度.11、C【解析】
根據已知條件求得等差數列的通項公式,判斷出最小時的值,由此求得的最小值.【詳解】依題意,解得,所以.由解得,所以前項和中,前項的和最小,且.故選:C【點睛】本小題主要考查等差數列通項公式和前項和公式的基本量計算,考查等差數列前項和最值的求法,屬于基礎題.12、D【解析】
根據雙曲線的一條漸近線方程為,列出方程,求出的值即可.【詳解】∵雙曲線的一條漸近線方程為,可得,∴,∴雙曲線的離心率.故選:D.【點睛】本小題主要考查雙曲線離心率的求法,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
畫圖直觀圖可得該幾何體為棱錐,再計算高求解體積即可.【詳解】解:如圖,是一個四棱錐的平面展開圖,其中間是邊長為的正方形,上面三角形是等邊三角形,左、右三角形是等腰直角三角形,此四棱錐中,是邊長為的正方形,是邊長為的等邊三角形,故,又,故平面平面,的高是四棱錐的高,此四棱錐的體積為:.故答案為:.【點睛】本題主要考查了四棱錐中的長度計算以及垂直的判定和體積計算等,需要根據題意14、3【解析】
分別用1和進行分類討論即可【詳解】當第一個因式取1時,第二個因式應取含的項,則對應系數為:;當第一個因式取時,第二個因式應取含的項,則對應系數為:;故的展開式中的系數為.故答案為:3【點睛】本題考查二項式定理中具體項對應系數的求解,屬于基礎題15、【解析】
采用數形結合,計算以及,然后根據橢圓的定義可得,并使用余弦定理以及,可得結果.【詳解】如圖由,所以由,所以又,則所以所以化簡可得:則故答案為:【點睛】本題考查橢圓的定義以及余弦定理的使用,關鍵在于根據角度求出線段的長度,考查分析能力以及計算能力,屬中檔題.16、【解析】
由偶函數的性質直接求解即可【詳解】.故答案為【點睛】本題考查函數的奇偶性,對數函數的運算,考查運算求解能力三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)曲線的直角坐標方程為,直線的普通方程為;(2)【解析】
(1)由極坐標與直角坐標的互化公式和參數方程與普通方程的互化,即可求解曲線的直角坐標方程和直線的普通方程;(2)把的參數方程代入拋物線方程中,利用韋達定理得,,可得到,根據因為,,成等比數列,列出方程,即可求解.【詳解】(1)由題意,曲線的極坐標方程可化為,又由,可得曲線的直角坐標方程為,由直線的參數方程為(為參數),消去參數,得,即直線的普通方程為;(2)把的參數方程代入拋物線方程中,得,由,設方程的兩根分別為,,則,,可得,.所以,,.因為,,成等比數列,所以,即,則,解得解得或(舍),所以實數.【點睛】本題主要考查了極坐標方程與直角坐標方程,以及參數方程與普通方程的互化,以及直線參數方程的應用,其中解答中熟記互化公式,合理應用直線的參數方程中參數的幾何意義是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.18、(1);(2)【解析】
(1)由,利用正弦定理轉化整理為,再利用余弦定理求解.(2)根據,利用兩角和的余弦得到,利用數形結合,設,在中,由正弦定理求得,在中,求得再求解.【詳解】(1)因為,所以,即,即,所以.(2)∵,.所以,從而.所以,.不妨設,O為外接圓圓心則AO=1,,.在中,由正弦定理知,有.即;在中,由,,從而.所以.【點睛】本題主要考查平面向量的模的幾何意義,還考查了數形結合的方法,屬于中檔題.19、(1)(2)答案不唯一,見解析【解析】
(1)由題意根據和差角的三角函數公式可得,再根據同角三角函數基本關系可得的值;(2)在中,由余弦定理可得,解方程分別由三角形面積公式可得答案.【詳解】解:(1)在中,因為,又已知,所以,因為,所以,于是.所以.(2)在中,由余弦定理得,得解得或,當時,的面積,當時,的面積.【點睛】本題考查正余弦定理理解三角形,涉及三角形的面積公式和分類討論思想,屬于中檔題.20、(1)證明見解析(0,2);(2)存在,理由見解析【解析】
(1)設直線l的方程為y=kx+b代入拋物線的方程,利用OA⊥OB,求出b,即可知直線過定點(2)由斜率公式分別求出,,聯立直線與拋物線,橢圓,再由根與系數的關系得,,,代入,,化簡即可求解.【詳解】(1)證明:由題知,直線l的斜率存在且不過原點,故設由可得,.,,故所以直線l的方程為故直線l恒過定點.(2)由(1)知設由可得,,即存在常數滿足題意.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 東營春季高考數學試卷
- 德城區1年級數學試卷
- 培訓課件要有什么內容
- 拱墅區四年級下數學試卷
- 二中廣雅初中數學試卷
- 骨科專業培訓課件
- 2025年04月河南南陽市社旗縣醫療健康服務集團招聘250人筆試歷年專業考點(難、易錯點)附帶答案詳解
- 適合提升培訓的課件
- 2025至2030磁控健身車產業市場深度調研及發展趨勢與發展趨勢分析與未來投資戰略咨詢研究報告
- 2025至2030船舶電子行業市場發展分析與發展前景及有效策略與實施路徑評估報告
- 新生兒肺動脈高壓
- 計算機硬件購銷合同
- 裝表接電課件(PPT 86頁)
- 2019年GJB9001C-2017組織內外部環境因素風險和機遇識別評價分析及應對措施一覽表備用
- 《2015年全省高校微課教學比賽工作方案(高職高專組)》
- 鉆機電氣控制系統操作手冊
- 氬氣安全周知卡
- 太鋼不銹鋼產品介紹
- 2019新版《建筑設計服務計費指導》
- 幼兒專注力的個案培養
- 建筑工程五方建設主體備案意見表
評論
0/150
提交評論