河北省邯鄲市成安一中2021-2022學年高考數學必刷試卷含解析_第1頁
河北省邯鄲市成安一中2021-2022學年高考數學必刷試卷含解析_第2頁
河北省邯鄲市成安一中2021-2022學年高考數學必刷試卷含解析_第3頁
河北省邯鄲市成安一中2021-2022學年高考數學必刷試卷含解析_第4頁
河北省邯鄲市成安一中2021-2022學年高考數學必刷試卷含解析_第5頁
免費預覽已結束,剩余15頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在等差數列中,,,若(),則數列的最大值是()A. B.C.1 D.32.設P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},則A.PQ B.QPC.Q D.Q3.已知等差數列的前項和為,,,則()A.25 B.32 C.35 D.404.不等式組表示的平面區域為,則()A., B.,C., D.,5.己知四棱錐中,四邊形為等腰梯形,,,是等邊三角形,且;若點在四棱錐的外接球面上運動,記點到平面的距離為,若平面平面,則的最大值為()A. B.C. D.6.已知集合,,則為()A. B. C. D.7.已知雙曲線的離心率為,拋物線的焦點坐標為,若,則雙曲線的漸近線方程為()A. B.C. D.8.雙曲線的漸近線方程是()A. B. C. D.9.若函數恰有3個零點,則實數的取值范圍是()A. B. C. D.10.已知等比數列的各項均為正數,設其前n項和,若(),則()A.30 B. C. D.6211.已知,,為圓上的動點,,過點作與垂直的直線交直線于點,若點的橫坐標為,則的取值范圍是()A. B. C. D.12.設復數滿足(為虛數單位),則在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.展開式中的系數為_______________.14.若,則的最小值是______.15.“”是“”的__________條件.(填寫“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”之一)16.已知函數f(x)=axlnx﹣bx(a,b∈R)在點(e,f(e))處的切線方程為y=3x﹣e,則a+b=_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,平面四邊形為直角梯形,,,,將繞著翻折到.(1)為上一點,且,當平面時,求實數的值;(2)當平面與平面所成的銳二面角大小為時,求與平面所成角的正弦.18.(12分)已知數列中,(實數為常數),是其前項和,且數列是等比數列,恰為與的等比中項.(1)證明:數列是等差數列;(2)求數列的通項公式;(3)若,當時,的前項和為,求證:對任意,都有.19.(12分)已知函數(I)若討論的單調性;(Ⅱ)若,且對于函數的圖象上兩點,存在,使得函數的圖象在處的切線.求證:.20.(12分)在數列中,,(1)求數列的通項公式;(2)若存在,使得成立,求實數的最小值21.(12分)如圖,設橢圓:,長軸的右端點與拋物線:的焦點重合,且橢圓的離心率是.(Ⅰ)求橢圓的標準方程;(Ⅱ)過作直線交拋物線于,兩點,過且與直線垂直的直線交橢圓于另一點,求面積的最小值,以及取到最小值時直線的方程.22.(10分)已知函數,,若存在實數使成立,求實數的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

在等差數列中,利用已知可求得通項公式,進而,借助函數的的單調性可知,當時,取最大即可求得結果.【詳解】因為,所以,即,又,所以公差,所以,即,因為函數,在時,單調遞減,且;在時,單調遞減,且.所以數列的最大值是,且,所以數列的最大值是3.故選:D.【點睛】本題考查等差數列的通項公式,考查數列與函數的關系,借助函數單調性研究數列最值問題,難度較易.2.C【解析】

解:因為P={y|y=-x2+1,x∈R}={y|y1},Q={y|y=2x,x∈R}={y|y>0},因此選C3.C【解析】

設出等差數列的首項和公差,即可根據題意列出兩個方程,求出通項公式,從而求得.【詳解】設等差數列的首項為,公差為,則,解得,∴,即有.故選:C.【點睛】本題主要考查等差數列的通項公式的求法和應用,涉及等差數列的前項和公式的應用,屬于容易題.4.D【解析】

根據題意,分析不等式組的幾何意義,可得其表示的平面區域,設,分析的幾何意義,可得的最小值,據此分析選項即可得答案.【詳解】解:根據題意,不等式組其表示的平面區域如圖所示,其中,,

設,則,的幾何意義為直線在軸上的截距的2倍,

由圖可得:當過點時,直線在軸上的截距最大,即,當過點原點時,直線在軸上的截距最小,即,故AB錯誤;

設,則的幾何意義為點與點連線的斜率,由圖可得最大可到無窮大,最小可到無窮小,故C錯誤,D正確;故選:D.【點睛】本題考查本題考查二元一次不等式的性質以及應用,關鍵是對目標函數幾何意義的認識,屬于基礎題.5.A【解析】

根據平面平面,四邊形為等腰梯形,則球心在過的中點的面的垂線上,又是等邊三角形,所以球心也在過的外心面的垂線上,從而找到球心,再根據已知量求解即可.【詳解】依題意如圖所示:取的中點,則是等腰梯形外接圓的圓心,取是的外心,作平面平面,則是四棱錐的外接球球心,且,設四棱錐的外接球半徑為,則,而,所以,故選:A.【點睛】本題考查組合體、球,還考查空間想象能力以及數形結合的思想,屬于難題.6.C【解析】

分別求解出集合的具體范圍,由集合的交集運算即可求得答案.【詳解】因為集合,,所以故選:C【點睛】本題考查對數函數的定義域求法、一元二次不等式的解法及集合的交集運算,考查基本運算能力.7.A【解析】

求出拋物線的焦點坐標,得到雙曲線的離心率,然后求解a,b關系,即可得到雙曲線的漸近線方程.【詳解】拋物線y2=2px(p>0)的焦點坐標為(1,0),則p=2,又e=p,所以e2,可得c2=4a2=a2+b2,可得:ba,所以雙曲線的漸近線方程為:y=±.故選:A.【點睛】本題考查雙曲線的離心率以及雙曲線漸近線方程的求法,涉及拋物線的簡單性質的應用.8.C【解析】

根據雙曲線的標準方程即可得出該雙曲線的漸近線方程.【詳解】由題意可知,雙曲線的漸近線方程是.故選:C.【點睛】本題考查雙曲線的漸近線方程的求法,是基礎題,解題時要認真審題,注意雙曲線的簡單性質的合理運用.9.B【解析】

求導函數,求出函數的極值,利用函數恰有三個零點,即可求實數的取值范圍.【詳解】函數的導數為,令,則或,上單調遞減,上單調遞增,所以0或是函數y的極值點,函數的極值為:,函數恰有三個零點,則實數的取值范圍是:.故選B.【點睛】該題考查的是有關結合函數零點個數,來確定參數的取值范圍的問題,在解題的過程中,注意應用導數研究函數圖象的走向,利用數形結合思想,轉化為函數圖象間交點個數的問題,難度不大.10.B【解析】

根據,分別令,結合等比數列的通項公式,得到關于首項和公比的方程組,解方程組求出首項和公式,最后利用等比數列前n項和公式進行求解即可.【詳解】設等比數列的公比為,由題意可知中:.由,分別令,可得、,由等比數列的通項公式可得:,因此.故選:B【點睛】本題考查了等比數列的通項公式和前n項和公式的應用,考查了數學運算能力.11.A【解析】

由題意得,即可得點M的軌跡為以A,B為左、右焦點,的雙曲線,根據雙曲線的性質即可得解.【詳解】如圖,連接OP,AM,由題意得,點M的軌跡為以A,B為左、右焦點,的雙曲線,.故選:A.【點睛】本題考查了雙曲線定義的應用,考查了轉化化歸思想,屬于中檔題.12.A【解析】

由復數的除法運算可整理得到,由此得到對應的點的坐標,從而確定所處象限.【詳解】由得:,對應的點的坐標為,位于第一象限.故選:.【點睛】本題考查復數對應的點所在象限的求解,涉及到復數的除法運算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

把按照二項式定理展開,可得的展開式中的系數.【詳解】解:,故它的展開式中的系數為,故答案為:.【點睛】本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數的性質,屬于基礎題.14.8【解析】

根據,利用基本不等式可求得函數最值.【詳解】,,當且僅當且,即時,等號成立.時,取得最小值.故答案為:【點睛】本題考查基本不等式,構造基本不等式的形式是解題關鍵.15.充分不必要【解析】

由余弦的二倍角公式可得,即或,即可判斷命題的關系.【詳解】由,所以或,所以“”是“”的充分不必要條件.故答案為:充分不必要【點睛】本題考查命題的充分條件與必要條件的判斷,考查余弦的二倍角公式的應用.16.0【解析】

由題意,列方程組可求,即求.【詳解】∵在點處的切線方程為,,代入得①.又②.聯立①②解得:..故答案為:0.【點睛】本題考查導數的幾何意義,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】

(1)連接交于點,連接,利用線面平行的性質定理可推導出,然后利用平行線分線段成比例定理可求得的值;(2)取中點,連接、,過點作,則,作于,連接,推導出,,可得出為平面與平面所成的銳二面角,由此計算出、,并證明出平面,可得出直線與平面所成的角為,進而可求得與平面所成角的正弦值.【詳解】(1)連接交于點,連接,平面,平面,平面平面,,在梯形中,,則,,,,所以,;(2)取中點,連接、,過點作,則,作于,連接.為的中點,且,,且,所以,四邊形為平行四邊形,由于,,,,,,,為的中點,所以,,,同理,,,,平面,,,,為面與面所成的銳二面角,,,,,則,,,平面,平面,,,,面,為與底面所成的角,,,.在中,.因此,與平面所成角的正弦值為.【點睛】本題考查利用線面平行的性質求參數,同時也考查了線面角的計算,涉及利用二面角求線段長度,考查推理能力與計算能力,屬于中等題.18.(1)見解析(2)(3)見解析【解析】

(1)令可得,即.得到,再利用通項公式和前n項和的關系求解,(2)由(1)知,.設等比數列的公比為,所以,再根據恰為與的等比中項求解,(3)由(2)得到時,,,求得,再代入證明?!驹斀狻浚?)解:令可得,即.所以.時,可得,當時,所以.顯然當時,滿足上式.所以.,所以數列是等差數列,(2)由(1)知,.設等比數列的公比為,所以,恰為與的等比中項,所以,解得,所以(3)時,,,而時,,,所以當時,.當時,,∴對任意,都有,【點睛】本題主要考查數列的通項公式和前n項和的關系,等差數列,等比數列的定義和性質以及數列放縮的方法,還考查了轉化化歸的思想和運算求解的能力,屬于難題,19.(1)見解析(2)見證明【解析】

(1)對函數求導,分別討論,以及,即可得出結果;(2)根據題意,由導數幾何意義得到,將證明轉化為證明即可,再令,設,用導數方法判斷出的單調性,進而可得出結論成立.【詳解】(1)解:易得,函數的定義域為,,令,得或.①當時,時,,函數單調遞減;時,,函數單調遞增.此時,的減區間為,增區間為.②當時,時,,函數單調遞減;或時,,函數單調遞增.此時,的減區間為,增區間為,.③當時,時,,函數單調遞增;此時,的減區間為.綜上,當時,的減區間為,增區間為:當時,的減區間為,增區間為.;當時,增區間為.(2)證明:由題意及導數的幾何意義,得由(1)中得.易知,導函數在上為增函數,所以,要證,只要證,即,即證.因為,不妨令,則.所以,所以在上為增函數,所以,即,所以,即,即.故有(得證).【點睛】本題主要考查導數的應用,通常需要對函數求導,利用導數的方法研究函數的單調性以及函數極值等即可,屬于常考題型.20.(1);(2)【解析】

(1)由得,兩式相減可得是從第二項開始的等比數列,由此即可求出答案;(2),分類討論,當時,,作商法可得數列為遞增數列,由此可得答案,【詳解】解:(1)因為,,兩式相減得:,即,是從第二項開始的等比數列,∵∴,則,;(2),當時,;當時,設遞增,,所以實數的最小值.【點睛】本題主要考查地推數列的應用,屬于中檔題.21.(Ⅰ);(Ⅱ)面積的最小值為9,.【解析】

(Ⅰ)由已知求出拋物線的焦點坐標即得橢圓中的,再由離心率可求得,從而得值,得標準方程;(Ⅱ)設直線方程為,設,把直線方程代入拋物線方程,化為的一元二次方程,由韋達定理得,由弦長公式得,同理求得點的橫坐標,于是可得,將面積表示為參數的函數,利用導數可求得最大值.【詳解】(Ⅰ)∵橢圓:,長軸的右端點與拋物線:的焦點重合,∴,又∵橢圓的離心率是,∴,,∴橢圓的標準方程為.(Ⅱ)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論