




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.估計,的值應在()A.1和2之間 B.2和3之間 C.3和4之間 D.4和5之間2.小軍旅行箱的密碼是一個六位數,由于他忘記了密碼的末位數字,則小軍能一次打開該旅行箱的概率是()A. B. C. D.3.如圖,的頂點在第一象限,頂點在軸上,反比例函數的圖象經過點,若,的面積為,則的值為()A. B. C. D.4.在下列四種圖形變換中,如圖圖案包含的變換是()A.平移、旋轉和軸對稱 B.軸對稱和平移C.平移和旋轉 D.旋轉和軸對稱5.如圖,已知點A,B,C,D,E,F是邊長為1的正六邊形的頂點,連接任意兩點均可得到一條線段,在連接兩點所得的所有線段中任取一條線段,取到長度為2的線段的概率為()A. B. C. D.6.一元二次方程x2-8x-1=0配方后為()A.(x-4)2=17 B.(x+4)2=15C.(x+4)2=17 D.(x-4)2=17或(x+4)2=177.以半徑為1的圓的內接正三角形、正方形、正六邊形的邊心距為三邊作三角形,則該三角形的面積是()A. B. C. D.8.如圖,在平面直角坐標系中,將繞著旋轉中心順時針旋轉,得到,則旋轉中心的坐標為()A. B.C. D.9.如圖,∠ACB是⊙O的圓周角,若⊙O的半徑為10,∠ACB=45°,則扇形AOB的面積為()A.5π B.12.5π C.20π D.25π10.已知二次函數y=ax2+bx+c的圖像如圖所示,則下列結論正確的個數有()①c>0;②b2-4ac<0;③a-b+c>0;④當x>-1時,y隨x的增大而減小.A.4個 B.3個 C.2個 D.1個11.拋物線的對稱軸是()A.直線=-1 B.直線=1 C.直線=-2 D.直線=212.在下列四個圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.二、填空題(每題4分,共24分)13.已知線段a=4,b=9,則a,b的比例中項線段長等于________.14.二次函數y=3x2+3的最小值是__________.15.已知圓錐的底面半徑為4cm,母線長為6cm,則圓錐的側面積是__________cm2.16.如圖等邊三角形內接于,若的半徑為1,則圖中陰影部分的面積等于_________.17.已知正方形ABCD的邊長為,分別以B、D為圓心,以正方形的邊長為半徑在正方形內畫弧,得到如圖所示的陰影部分,若隨機向正方形ABCD內投擲一顆石子,則石子落在陰影部分的概率為_____.(結果保留π)18.如圖,⊙O經過A,B,C三點,PA,PB分別與⊙O相切于A,B點,∠P=46°,則∠C=_____.三、解答題(共78分)19.(8分)如圖,正方形ABCD中,M為BC上一點,F是AM的中點,EF⊥AM,垂足為F,交AD的延長線于點E,交DC于點N.(1)求證:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的長.20.(8分)如圖,內接于,直徑交于點,延長至點,使,且,連接并延長交過點的切線于點,且滿足,連接.(1)求證:;(2)求證:是的切線.21.(8分)已知四邊形ABCD中,E,F分別是AB,AD邊上的點,DE與CF相交于點G.(1)如圖①,若四邊形ABCD是矩形,且DE⊥CF,求證:.(2)如圖②,若四邊形ABCD是平行四邊形,要使成立,完成下列探究過程:要使,轉化成,顯然△DEA與△CFD不相似,考慮,需要△DEA∽△DFG,只需∠A=∠________;另一方面,只要,需要△CFD∽△CDG,只需∠CGD=∠________.由此探究出使成立時,∠B與∠EGC應該滿足的關系是________.(3)如圖③,若AB=BC=6,AD=CD=8,∠BAD=90°,DE⊥CF,那么的值是多少?(直接寫出結果)22.(10分)先化簡,再求值:(1+),其中,x=﹣1.23.(10分)(發現)在解一元二次方程的時候,發現有一類形如x2+(m+n)x+mn=0的方程,其常數項是兩個因數的積,而它的一次項系數恰好是這兩個因數的和,則我們可以把它轉化成x2+(m+n)x+mn=(m+x)(m+n)=0(探索)解方程:x2+5x+6=0:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3),原方程可轉化為(x+2)(x+3)=0,即x+2=0或x+3=0,進而可求解.(歸納)若x2+px+q=(x+m)(x+n),則p=q=;(應用)(1)運用上述方法解方程x2+6x+8=0;(2)結合上述材料,并根據“兩數相乘,同號得正,異號得負“,求出一元二次不等式x2﹣2x﹣3>0的解.24.(10分)如圖在直角坐標系中△ABC的頂點A、B、C三點坐標為A(7,1),B(8,2),C(9,0).(1)請在圖中畫出△ABC的一個以點P(12,0)為位似中心,相似比為3的位似圖形△A'B'C'(要求與△ABC在P點同一側);(2)直接寫出A'點的坐標;(3)直接寫出△A'B'C'的周長.25.(12分)關于的一元二次方程的兩個實數根分別為,.(1)求的取值范圍;(2)若,求的值.26.解方程:x2+2x=1.
參考答案一、選擇題(每題4分,共48分)1、B【解析】先根據二次根式的乘法法則化簡,再估算出的大小即可判斷.【詳解】解:,,故的值應在2和3之間.故選:B.【點睛】本題主要考查了無理數的估算,正確估算出的范圍是解答本題的關鍵.2、A【解析】∵密碼的末位數字共有10種可能(0、1、2、3、4、5、6、7、8、9、0都有可能),∴當他忘記了末位數字時,要一次能打開的概率是.故選A.3、B【分析】先求得的面積再得到,根據反比例函數系數的幾何意義即可求得的值.【詳解】過點作軸,交軸于點,,,的面積是,,,,,故選:B.【點睛】本題主要考查反比例函數系數的幾何意義,反比例函數中的幾何意義,這里體現了數形結合的思想,做此類題一定要正確理解的幾何意義.4、D【分析】根據圖形的形狀沿中間的豎線折疊,兩部分可重合,里外各一個順時針旋轉8次,可得答案.【詳解】解:圖形的形狀沿中間的豎線折疊,兩部分可重合,得軸對稱.里外各一個順時針旋轉8次,得旋轉.故選:D.【點睛】本題考查了幾何變換的類型,平移是沿直線移動一定距離得到新圖形,旋轉是繞某個點旋轉一定角度得到新圖形,軸對稱是沿某條直線翻折得到新圖形.觀察時要緊扣圖形變換特點,認真判斷.5、D【分析】先求出連接兩點所得的所有線段總數,再用列舉法求出取到長度為2的線段條數,由此能求出在連接兩點所得的所有線段中任取一條線段,取到長度為2的線段的概率.【詳解】∵點A,B,C,D,E,F是邊長為1的正六邊形的頂點,連接任意兩點均可得到一條線段,∴連接兩點所得的所有線段總數n==15條,∵取到長度為2的線段有:FC、AD、EB共3條∴在連接兩點所得的所有線段中任取一條線段,取到長度為2的線段的概率為:p=.故選:D【點睛】此題主要考查了正多邊形和圓以及幾何概率,正確利用正六邊形的性質得出AD的長是解題關鍵.6、A【解析】x2-8x-1=0,移項,得x2-8x=1,配方,得x2-8x+42=1+42,即(x-4)2=17.故選A.點睛:配方法的一般步驟:(1)把常數項移到等號的右邊;(2)把二次項的系數化為1;(3)等式兩邊同時加上一次項系數一半的平方.7、D【解析】由于內接正三角形、正方形、正六邊形是特殊內角的多邊形,可構造直角三角形分別求出邊心距的長,由勾股定理逆定理可得該三角形是直角三角形,進而可得其面積.【詳解】如圖1,∵OC=1,∴OD=1×sin30°=;如圖2,∵OB=1,∴OE=1×sin45°=;如圖3,∵OA=1,∴OD=1×cos30°=,則該三角形的三邊分別為:、、,∵()2+()2=()2,∴該三角形是以、為直角邊,為斜邊的直角三角形,∴該三角形的面積是,故選:D.【點睛】考查正多邊形的外接圓的問題,應用邊心距,半徑和半弦長構成直角三角形,來求相關長度是解題關鍵。8、C【分析】根據旋轉的性質:對應點到旋轉中心的距離相等,可知旋轉中心一定在任何一對對應點所連線段的垂直平分線上,由圖形可知,線段OC與BE的垂直平分線的交點即為所求.【詳解】∵繞旋轉中心順時針旋轉90°后得到,∴O、B的對應點分別是C、E,又∵線段OC的垂直平分線為y=1,線段BE是邊長為2的正方形的對角線,其垂直平分線是另一條對角線所在的直線,由圖形可知,線段OC與BE的垂直平分線的交點為(1,1).故選C.【點睛】本題考查了旋轉的性質及垂直平分線的判定.9、D【分析】首先根據圓周角的度數求得圓心角的度數,然后代入扇形的面積公式求解即可.【詳解】解:∵∠ACB=45°,∴∠AOB=90°,∵半徑為10,∴扇形AOB的面積為:=25π,故選:D.【點睛】考查了圓周角定理及扇形的面積公式,解題的關鍵是牢記扇形的面積公式并正確的運算.10、C【分析】由拋物線的開口方向判斷a與0的關系,由拋物線與y軸的交點判斷c與0的關系,然后根據拋物線與x軸交點及x=-1時二次函數的值的情況進行推理,進而對所得結論進行判斷.【詳解】解:由圖象可知,a<0,c>0,故①正確;拋物線與x軸有兩個交點,則b2-4ac>0,故②錯誤;∵當x=-1時,y>0,即a-b+c>0,故③正確;
由圖象可知,圖象開口向下,對稱軸x>-1,在對稱軸右側,y隨x的增大而減小,而在對稱軸左側和-1之間,是y隨x的增大而減小,故④錯誤.
故選:C.【點睛】本題考查了二次函數圖象與系數的關系:二次項系數a決定拋物線的開口方向和大小.當a>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數b和二次項系數a共同決定對稱軸的位置:當a與b同號時,對稱軸在y軸左;當a與b異號時,對稱軸在y軸右.常數項c決定拋物線與y軸交點:拋物線與y軸交于(0,c).拋物線與x軸交點個數由判別式確定:△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.11、B【分析】根據題目所給的二次函數的頂點式直接得到函數圖象的對稱軸.【詳解】解:∵解析式為,∴對稱軸是直線.故選:B.【點睛】本題考查二次函數的頂點式,解題的關鍵是根據二次函數的頂點式得到函數圖象的性質.12、A【解析】根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】A、是中心對稱圖形,也是軸對稱圖形,符合題意;B、是軸對稱圖形,不是中心對稱圖形,不符合題意;C、是軸對稱圖形,不是中心對稱圖形,不符合題意;D、不是軸對稱圖形,是中心對稱圖形,不符合題意.故選A.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.二、填空題(每題4分,共24分)13、1【分析】根據比例中項的定義,列出比例式即可求解.【詳解】解:根據比例中項的概念結合比例的基本性質,得:比例中項的平方等于兩條線段的乘積,
∴,即,解得,(不合題意,舍去)
故答案為:1.【點睛】此題考查了比例線段;理解比例中項的概念,注意線段不能是負數.14、1.【分析】根據二次函數的性質求出函數的最小值即可.【詳解】解:∵y=1x2+1=1(x+0)2+1,
∴頂點坐標為(0,1).
∴該函數的最小值是1.故答案為:1.【點睛】本題考查了二次函數的性質,二次函數的最值,正確的理解題意是解題的關鍵.15、【解析】圓錐側面積=×4×2π×6=cm2.故本題答案為:.16、【分析】如圖(見解析),連接OC,根據圓的內接三角形和等邊三角形的性質可得,的面積等于的面積、以及的度數,從而可得陰影部分的面積等于鈍角對應的扇形面積.【詳解】如圖,連接OC由圓的內接三角形得,點O為垂直平分線的交點又因是等邊三角形,則其垂直平分線的交點與角平分線的交點重合,且點O到AB和AC的距離相等則故答案為:.【點睛】本題考查了圓的內接三角形的性質、等邊三角形的性質、扇形面積公式,根據等邊三角形的性質得出的面積等于的面積是解題關鍵.17、【分析】先求出空白部分面積,進而得出陰影部分面積,再利用石子落在陰影部分的概率=陰影部分面積÷正方形面積,進而得出答案.【詳解】∵扇形ABC中空白面積=,∴正方形中空白面積=2×(2﹣)=4﹣π,∴陰影部分面積=2﹣(4﹣π)=π﹣2,∴隨機向正方形ABCD內投擲一顆石子,石子落在陰影部分的概率=.故答案為:.【點睛】本題主要考查扇形的面積公式和概率公式,通過割補法,求出陰影部分面積,是解題的關鍵.18、67°【分析】根據切線的性質定理可得到∠OAP=∠OBP=90°,再根據四邊形的內角和求出∠AOB,然后根據圓周角定理解答.【詳解】解:∵PA,PB分別與⊙O相切于A,B兩點,∴∠OAP=90°,∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣46°=134°,∴∠C=∠AOB=67°,故答案為:67°.【點睛】本題考查了圓的切線的性質、四邊形的內角和和圓周角定理,屬于常見題型,熟練掌握上述知識是解題關鍵.三、解答題(共78分)19、(1)見解析;(2)4.1【詳解】試題分析:(1)由正方形的性質得出AB=AD,∠B=10°,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出結論;(2)由勾股定理求出AM,得出AF,由△ABM∽△EFA得出比例式,求出AE,即可得出DE的長.試題解析:(1)∵四邊形ABCD是正方形,∴AB=AD,∠B=10°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=10°,∴∠B=∠AFE,∴△ABM∽△EFA;(2)∵∠B=10°,AB=12,BM=5,∴AM==13,AD=12,∵F是AM的中點,∴AF=AM=6.5,∵△ABM∽△EFA,∴,即,∴AE=16.1,∴DE=AE-AD=4.1.考點:1.相似三角形的判定與性質;2.正方形的性質.20、(1)詳見解析;(2)詳見解析.【分析】(1)根據切線的性質得到∠GAF=90°,根據平行線的性質得到AE⊥BC,根據圓周角定理即可得到結論;
(2)由DF=2OD,得到OF=3OD=3OC,由得到OC=OD=3OE,推出△COE∽△FOC,根據相似三角形的性質得到∠OCF=∠OEC=90°,于是得到CF是⊙O的切線.【詳解】解:(1)是的切線,是的直徑,,,,,,,;(2),,,,,,是的切線.【點睛】本題考查了切線的判定和性質,相似三角形的判定和性質,根據切線的判定和性質去分析所缺條件是解題的關鍵.21、(1)證明見解析;(2)DGF,CDF,∠B+∠EGC=180°;(3).【分析】(1)根據矩形性質得出∠A=∠FDC=90°,求出∠CFD=∠AED,證出△AED∽△DFC即可;(2)當∠B+∠EGC=180°時,成立,分別證明即可;(3)過C作CN⊥AD于N,CM⊥AB交AB延長線于M,連接BD,設CN=x,△BAD≌△BCD,推出∠BCD=∠A=90°,證△BCM∽△DCN,求出CM=x,在Rt△CMB中,由勾股定理得出BM2+CM2=BC2,代入得出方程(x?2)2+(x)2=22,求出CN=,證出△AED∽△NFC,即可得出答案.【詳解】(1)證明:∵四邊形ABCD是矩形,∴∠A=∠FDC=90°,∵CF⊥DE,∴∠DGF=90°,∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,∴∠CFD=∠AED,∵∠A=∠CDF,∴△AED∽△DFC,∴;(2)當∠B+∠EGC=180°時,.要使,轉化成,顯然△DEA與△CFD不相似,考慮,需要△DEA∽△DFG,只需∠A=∠DGF;另一方面,只要,需要△CFD∽△CDG,只需∠CGD=∠CDF.當∠B+∠EGC=180°時:∵四邊形ABCD是平行四邊形,∴∠B=∠ADC,AD∥BC,∴∠B+∠A=180°,∵∠B+∠EGC=180°,∴∠A=∠EGC=∠FGD,∵∠FDG=∠EDA,∴△DFG∽△DEA,∴,∵∠B=∠ADC,∠B+∠EGC=180°,∠EGC+∠DGC=180°,∴∠CGD=∠CDF,∵∠GCD=∠DCF,∴△CGD∽△CDF,∴,∴,∴,即當∠B+∠EGC=180°時,成立;(3)過C作CN⊥AD于N,CM⊥AB交AB延長線于M,連接BD,設CN=x,
∵∠BAD=90°,即AB⊥AD,∴∠A=∠M=∠CNA=90°,∴四邊形AMCN是矩形,∴AM=CN,AN=CM,∵在△BAD和△BCD中,,∴△BAD≌△BCD(SSS),∴∠BCD=∠A=90°,∴∠ABC+∠ADC=180°,∵∠ABC+∠CBM=180°,∴∠MBC=∠ADC,∵∠CND=∠M=90°,∴△BCM∽△DCN,∴,∴,∴CM=x,在Rt△CMB中,CM=x,BM=AM?AB=x?2,由勾股定理得:BM2+CM2=BC2,∴(x?2)2+(x)2=22,x=0(舍去),x=,CN=,∵∠A=∠FGD=90°,∴∠AED+∠AFG=180°,∵∠AFG+∠NFC=180°,∴∠AED=∠CFN,∵∠A=∠CNF=90°,∴△AED∽△NFC,∴.【點睛】本題考查了矩形性質和判定,勾股定理,平行四邊形的性質和判定,全等三角形的性質和判定,相似三角形的性質和判定的應用,主要考查學生綜合運用性質和定理進行推理的能力,題目比較好.22、,1﹣【分析】根據分式混合運算的運算順序及運算法則進行化簡,再把x的值代入計算即可.【詳解】解:原式,當時,原式.【點睛】本題主要考查分式化簡求值,解決本題的關鍵是要熟練掌握分式通分和分式加減乘除運算法則.23、歸納:m+n,m;應用(1):x1=﹣2,x2=4;(2)x>3或x﹣1【分析】歸納:根據題意給出的方法即可求出答案.應用:(1)根據題意給出的方法即可求出答案;(2)根據題意給出的方法即可求出答案;【詳解】解:歸
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 音樂說課課件資源獲取
- 油田開發項目經濟效益和社會效益分析報告
- xx片區城鄉供水一體化項目數字化方案(參考模板)
- 鄉村治理結構優化實施方案
- 2025年油氣鉆采服務項目建議書
- 挖掘優勢-樹立科學就業觀
- 2025年房地產市場區域分化與產業升級關系及投資策略分析報告
- 工業互聯網平臺數據清洗算法在工業物聯網中的應用場景對比報告
- 探討游戲化教學法在幼兒教育中的應用研究
- 醫療器械注冊審批制度改革背景下2025年行業競爭格局與市場趨勢分析
- 2025年食品檢驗員考試試卷及答案
- 四川省德陽市2025年七年級下學期語文期末試卷及答案
- 黎族文化課件
- 中華人民共和國民營經濟促進法
- 色彩的魅力:藝術、科學與設計的交融
- 2025廣州市荔灣區輔警考試試卷真題
- 一季度安委會匯報材料
- 貴州省遵義市2024年八年級《數學》上學期期末試題與參考答案
- 產品質量問題追溯制度
- TACE圍手術期的護理
- GB/T 320-2025工業用合成鹽酸
評論
0/150
提交評論