




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一上數學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.下圖是函數的部分圖象,則()A. B.C. D.2.如圖,一個水平放置的平面圖形的直觀圖是邊長為2的菱形,且,則原平面圖形的周長為()A. B.C. D.83.在空間四邊形的各邊上的依次取點,若所在直線相交于點,則A.點必在直線上 B.點必在直線上C.點必在平面外 D.點必在平面內4.如圖,在三棱錐S-ABC中,G1,G2分別是△SAB和△SAC的重心,則直線G1G2與BC的位置關系是()A.相交 B.平行C.異面 D.以上都有可能5.已知集合,且,則的值可能為()A. B.C.0 D.16.已知命題,則是()A., B.,C., D.,7.已知,那么()A. B.C. D.8.已知函數,若存在四個互不相等的實數根,則實數的取值范圍為()A. B.C. D.9.若函數在定義域上的值域為,則()A. B.C. D.10.圓x2+y2+2x﹣4y+1=0的半徑為()A.1 B.C.2 D.411.已知,函數在上單調遞減,則的取值范圍是()A. B.C. D.12.學校為了調查學生在課外讀物方面的支出情況,抽出了一個容量為的樣本,其頻率分布直方圖如圖所示,其中支出在元的同學有30人,則的值為A.300 B.200C.150 D.100二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.若直線上存在滿足以下條件的點:過點作圓的兩條切線(切點分別為),四邊形的面積等于,則實數的取值范圍是_______14.若,則的值為___________.15.在中,,,且在上,則線段的長為______16.已知一個扇形的弧長為,其圓心角為,則這扇形的面積為______三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.已知cosα=-,α第三象限角,求(1)tanα的值;(2)sin(180°+α)cos(-α)sin(-α+180°)+cos(360°+α)sin(-α)tan(-α-180°)的值18.對正整數n,記In={1,2,3…,n},Pn={|m∈In,k∈In}(1)求集合P7中元素的個數;(2)若Pn的子集A中任意兩個元素之和不是整數的平方,則稱A為“稀疏集”.求n的最大值,使Pn能分成兩個不相交的稀疏集的并19.已知函數(1)求函數的單調遞增區間;(2)若,求函數的取值范圍20.已知集合,,.若,求實數a的取值范圍.21.已知直線,點.(1)求過點且與平行的直線的方程;(2)求過點且與垂直的直線的方程.22.已知函數f(x)=x2-ax+2(1)若f(x)≤-4的解集為[2,b],求實數a,b的值;(2)當時,若關于x的不等式f(x)≥1-x2恒成立,求實數a的取值范圍
參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、B【解析】由圖象求出函數的周期,進而可得的值,然后逆用五點作圖法求出的值即可求解.【詳解】解:由圖象可知,函數的周期,即,所以,不妨設時,由五點作圖法,得,所以,所以故選:B.2、B【解析】利用斜二測畫法還原直觀圖即得.【詳解】由題可知,∴,還原直觀圖可得原平面圖形,如圖,則,∴,∴原平面圖形的周長為.故選:B.3、B【解析】由題意連接EH、FG、BD,則P∈EH且P∈FG,再根據兩直線分別在平面ABD和BCD內,根據公理3則點P一定在兩個平面的交線BD上【詳解】如圖:連接EH、FG、BD,∵EH、FG所在直線相交于點P,∴P∈EH且P∈FG,∵EH?平面ABD,FG?平面BCD,∴P∈平面ABD,且P∈平面BCD,由∵平面ABD∩平面BCD=BD,∴P∈BD,故選B【點睛】本題考查公理3的應用,即根據此公理證明線共點或點共線問題,必須證明此點是兩個平面的公共點,可有點在線上,而線在面上進行證明4、B【解析】因為G1,G2分別是△SAB和△SAC的重心,所以,所以.又因為M、N分別為AB、AC的中點,所以MN//BC,所以考點:線面平行的判定定理;線面平行的性質定理;公理4;重心的性質點評:我們要掌握重心性質:若G1為△SAB的重心,M為AB中點,則5、C【解析】化簡集合得范圍,結合判斷四個選項即可【詳解】集合,四個選項中,只有,故選:C【點睛】本題考查元素與集合的關系,屬于基礎題6、C【解析】由全稱命題的否定是特稱命題即可得結果.【詳解】由全稱命題的否定是特稱命題知:,,是,,故選:C.7、C【解析】運用誘導公式即可化簡求值得解【詳解】,可得,那么故選:C8、D【解析】令,則,由題意,有兩個不同的解,有兩個不相等的實根,由圖可知,得或,所以和各有兩個解當有兩個解時,則,當有兩個解時,則或,綜上,的取值范圍是,故選D點睛:本題考查函數性質的應用.本題為嵌套函數的應用,一般的,我們應用整體思想解決問題,所以令,則,由題意,有兩個不同的解,有兩個不相等的實根,再結合圖象逐步分析,解得答案9、A【解析】的對稱軸為,且,然后可得答案.【詳解】因為的對稱軸為,且所以若函數在定義域上的值域為,則故選:A10、C【解析】將圓的方程化為標準方程即可得圓的半徑.【詳解】由圓x2+y2+2x﹣4y+1=0化為標準方程有:,所以圓的半徑為2.故選:C【點睛】本題考查圓的一般方程與標準方程的互化,并由此得出圓的半徑大小,屬于基礎題.11、A【解析】由題意可得,,,,.故A正確考點:三角函數單調性12、D【解析】根據頻率分布直方圖的面積和1,可得的頻率為P=1-10(0.01+0.024+0.036)=0.3,又由,解得.選D.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、【解析】通過畫出圖形,可計算出圓心到直線的最短距離,建立不等式即可得到的取值范圍.【詳解】作出圖形,由題意可知,,此時,四邊形即為,而,故,勾股定理可知,而要是得存在點P滿足該條件,只需O到直線的距離不大于即可,即,所以,故的取值范圍是.【點睛】本題主要考查直線與圓的位置關系,點到直線的距離公式,意在考查學生的轉化能力,計算能力,分析能力,難度中等.14、1或【解析】由誘導公式、二倍角公式變形計算【詳解】,所以或,時,;時,故答案為:1或15、1【解析】∵,∴,∴,∵且在上,∴線段為的角平分線,∴,以A為原點,如圖建立平面直角坐標系,則,D∴故答案為116、2【解析】根據弧長公式求出對應的半徑,然后根據扇形的面積公式求面積即可.【詳解】設扇形的半徑為,圓心角為,弧長,可得=4,這條弧所在的扇形面積為,故答案為.【點睛】本題主要考查扇形的面積公式和弧長公式,意在考查對基礎知識與基本公式掌握的熟練程度,屬于中檔題.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1);(2).【解析】(1)根據為第三象限角且求出的值,從而求出的值(1)將原式利用誘導公式化簡以后將的值代入即可得解【詳解】解:(1)∵cosα=-,α是第三象限角,∴sinα=-=-,tanα==2(2)sin(180°+α)cos(-α)sin(-α+180°)+cos(360°+α)sin(-α)tan(-α-180°)=-sinα?cosα?sinα+cosα?(-sinα)?(-tanα)=-cosαsin2α+sin2α=?+=【點睛】當已知正余弦的某個值且知道角的取值范圍時可直接利用同角公式求出另外一個值.關于誘導公式化簡需注意“奇變偶不變,符號看象限”18、(1)46(2)n的最大值為14【解析】(1)對于集合P7,有n=7.當k=4時,Pn={|m∈In,k∈In}中有3個數(1,2,3)與In={1,2,3…,n}中的數重復,由此求得集合P7中元素的個數為7×7﹣3=46(2)先證當n≥15時,Pn不能分成兩個不相交的稀疏集的并集.否則,設A和B為兩個不相交的稀疏集,使A∪B=Pn?In不妨設1∈A,則由于1+3=22,∴3?A,即3∈B.同理可得,6∈A,10∈B.又推出15∈A,但1+15=42,這與A為稀疏集相矛盾再證P14滿足要求.當k=1時,P14={|m∈I14,k∈I14}=I14,可以分成2個稀疏集的并集事實上,只要取A1={1,2,4,6,9,11,13},B1={3,5,7,8,10,12,14},則A1和B1都稀疏集,且A1∪B1=I14當k=4時,集合{|m∈I14}中,除整數外,剩下的數組成集合{,,,…,},可以分為下列3個稀疏集的并:A2={,,,},B2={,,}當k=9時,集合{|m∈I14}中,除整數外,剩下的數組成集合{,,,,…,,},可以分為下列3個稀疏集的并:A3={,,,,},B3={,,,,}最后,集合C═{|m∈I14,k∈I14,且k≠1,4,9}中的數的分母都是無理數,它與Pn中的任何其他數之和都不是整數,因此,令A=A1∪A2∪A3∪C,B=B1∪B2∪B3,則A和B是不相交的稀疏集,且A∪B=P14綜上可得,n的最大值為1419、(1),;(2);【解析】(1)利用降冪公式與輔助角公式將化簡,在利用正弦函數的單調性質即可求得函數的單調遞增區間;(2)由的取值范圍,求出的范圍,利用正弦函數的單調性即可求得函數的取值范圍【詳解】解:(1)因為由,,解得,,所以的單調遞增區間為,;(2),,當即時,當即時,,即20、【解析】求函數定義域得,解不等式得,進而得,再結合題意,分和兩種情況求解即可.【詳解】解:由,解得,所以,因為,解得,所以所以因為,所以,當時,,解得時,可得,解得:綜上可得:實數a的取值范圍是21、(1)(2)【解析】(1)由于直線與直線平行,所以直線的斜率與直線的斜率相等,所以利用點斜式可求出直線方程,(2)由于直線與直線垂直,所以直線的斜率與直線的斜率乘積等于,從而可求出直線的斜率,再利用點斜式可求出直線方程,【小問1詳解】已知直線的斜率為,設直線的斜率為,∵與平行,∴,∴直線的方程為,即直線的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司環保活動方案
- 公司節能推廣活動方案
- 2025年行業倫理道德與法律法規考核試題及答案
- 2025年文化產業管理考試試卷及答案
- 2025年文藝策劃師職業發展評估考試試題及答案
- 2025年網絡營銷與電子商務考試試題及答案
- 2025年設施管理工程師職業資格考試試題及答案
- 2025年農業經濟與發展考試試卷及答案
- 2025年歷史文化遺產保護與傳承考試卷及答案
- 2025年計算機網絡基本知識考試試題及答案
- 國家標準化代謝性疾病管理中心(MMC)及管理指南介紹(完整版)
- 中國移動5G手機產品白皮書(2025年版)-中國移動
- 企業金融知識
- 建筑公司安全生產責任制度(3篇)
- 防溺水救助培訓內容
- 2025年院感培訓計劃
- 車位開盤定價方案
- 2024年中國三回程烘干機市場調查研究報告
- 國開(北京)2024年秋《財務案例分析》形考作業答案
- DB52T 1512-2020 水利水電工程隧洞施工超前地質預報技術規程
- GB/T 44831-2024皮膚芯片通用技術要求
評論
0/150
提交評論